Siamese comparative transformer-based network for unsupervised landmark detection.

PLoS One

National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Landmark detection is a common task that benefits downstream computer vision tasks. Current landmark detection algorithms often train a sophisticated image pose encoder by reconstructing the source image to identify landmarks. Although a well-trained encoder can effectively capture landmark information through image reconstruction, it overlooks the semantic relationships between landmarks. This contradicts the goal of achieving semantic representations in landmark detection tasks. To address these challenges, we introduce a novel Siamese comparative transformer-based network that strengthens the semantic connections among detected landmarks. Specifically, the connection between landmarks with the same semantics has been enhanced by employing a Siamese contrastive regularizer. In addition, we integrate a lightweight direction-guided Transformer into the image pose encoder to perceive global feature relationships, thereby improving the representation and encoding of landmarks. Experiments on the CelebA, AFLW, and Cat Heads benchmarks demonstrate that our proposed method achieves competitive performance compared to existing unsupervised methods and even supervised methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687641PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313518PLOS

Publication Analysis

Top Keywords

landmark detection
16
siamese comparative
8
comparative transformer-based
8
transformer-based network
8
image pose
8
pose encoder
8
landmark
5
landmarks
5
network unsupervised
4
unsupervised landmark
4

Similar Publications

Toward universal immunofluorescence normalization for multiplex tissue imaging with UniFORM.

Cell Rep Methods

August 2025

Department of Biomedical Engineering and Computational Biology Program, OHSU, Portland, OR, USA; Knight Cancer Institute, OHSU, Portland, OR, USA. Electronic address:

We present UniFORM, a non-parametric, Python-based pipeline for normalizing multiplex tissue imaging (MTI) data at both the feature and pixel levels. UniFORM employs an automated rigid landmark registration method tailored to the distributional characteristics of MTI, with UniFORM operating without prior distributional assumptions and handling both unimodal and bimodal patterns. By aligning the biologically invariant negative populations, UniFORM removes technical variation while preserving tissue-specific expression patterns in positive populations.

View Article and Find Full Text PDF

Intracranial aneurysms (ICA) commonly occur in specific segments of the Circle of Willis (CoW), primarily, onto thirteen major arterial bifurcations. An accurate detection of these critical landmarks is necessary for a prompt and efficient diagnosis. We introduce a fully automated landmark detection approach for CoW bifurcations using a two-step neural networks process.

View Article and Find Full Text PDF

Aim: This study aimed to statistically evaluate and compare the accuracy, reliability, and efficiency of manual versus artificial intelligence (AI)-assisted digital cephalometric tracing using Steiner's and Down's analyses in orthodontic diagnostics.

Materials And Methods: A retrospective study was conducted using 20 lateral cephalograms obtained using the NewTom GiANO HR cone-beam computed tomography (CBCT) system (Quantitative Radiology, Verona, Italy). Manual tracings were performed on acetate sheets, while digital analysis employed the AudaxCeph® software (Audax d.

View Article and Find Full Text PDF

Precision livestock farming increasingly relies on non-invasive, high-fidelity systems capable of monitoring cattle with minimal disruption to behavior or welfare. Conventional identification methods, such as ear tags and wearable sensors, often compromise animal comfort and produce inconsistent data under real-world farm conditions. This study introduces Dairy DigiD, a deep learning-based biometric classification framework that categorizes dairy cattle into four physiologically defineda groups-young, mature milking, pregnant, and dry cows-using high-resolution facial images.

View Article and Find Full Text PDF

Background: After spinal cord injury (SCI), pro-inflammatory microglia accumulate and impede axonal regeneration. We explored whether secreted protein acidic and rich in cysteine (Sparc) restrains microglial inflammation and fosters neurite outgrowth.

Methods: Mouse microglial BV2 cells were polarized to a pro-inflammatory phenotype with lipopolysaccharides (LPSs).

View Article and Find Full Text PDF