98%
921
2 minutes
20
In the context of rapid urbanization, the proliferation of high-density residential zones and intricate infrastructure networks markedly amplifies a city's susceptibility to natural calamities, notably seismic events. Thus, a precise evaluation of a city's emergency capability for seismic events is imperative. This research proposes a novel and all-encompassing evaluation framework for indicators, grounded in crisis management theory, covering the entire spectrum of disaster mitigation, preparedness, response, and recovery. The framework comprises four primary dimensions and 15 auxiliary indicators, synergistically integrating quantitative and qualitative methodologies. Employing the coefficient of Coefficient of Variation Method and the Delphi Method, the study assigns weights to the indicators, while the 2-tuple fuzzy linguistic approach adeptly manages uncertain information. Utilizing Changchun City as an exemplar, the constructed and analyzed model highlights the city's strengths in emergency supply reserves and the formulation of emergency plans. However, the findings indicate a pressing need for enhancements in seismic preparedness, monitoring and early warning systems, urban economic resilience, and public education initiatives. This study not only furnishes a robust framework for evaluating disaster emergency capabilities specific to Changchun City but also imparts valuable insights applicable to seismic disaster management in other urban contexts. It substantially contributes to the theoretical and practical discourse on augmenting urban resilience in the face of natural disasters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681062 | PMC |
http://dx.doi.org/10.1038/s41598-024-81765-5 | DOI Listing |
J Sep Sci
September 2025
Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.
Heterostructures have emerged as promising contenders for surface-enhanced Raman scattering (SERS) applications. Nevertheless, the construction of a composite SERS substrate with well-matched energy levels persists as a challenge, primarily due to the restricted selection of SERS-active materials. In this study, we successfully synthesized a Ag nanoparticles (NPs)/ZnO nanorods (NRs)/GaN heterojunction featuring type II staggered energy bands, which provides an outstanding platform for efficient SERS detection.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China. Electronic address:
Quantum dots, with their superior intrinsic fluorescence and photostability, are emerging as a promising option for cancer gene therapy, diagnosis, and imaging. However, low gene delivery efficiency, insufficient targeting, and responsiveness remain challenges. To address these issues, PEI-based carbon quantum dots (CPNCs) were constructed by crosslinking polyethylenimine quantum dots (PQDs) with carbon quantum dots (CQDs) via disulfide bonds.
View Article and Find Full Text PDFBiotechnol Adv
September 2025
Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, China Jiliang University, Hangzhou 310018, China. Electronic address:
Nanopore direct RNA sequencing (DRS) is a transformative technology that enables full-length, single-molecule sequencing of native RNA, capturing transcript isoforms and preserving epitranscriptomic modifications without cDNA conversion. This review outlines key advances in DRS, including optimized protocols for mRNA, rRNA, tRNA, circRNA, and viral RNA, as well as analytical tools for isoform quantification, poly(A) tail measurement, fusion transcript identification, and base modification profiling. We highlight how DRS has redefined transcriptomic studies across diverse systems-from uncovering novel transcripts and alternative splicing events in cancer, plants, and parasites to enabling the direct detection of m6A, m5C, pseudouridine, and RNA editing events.
View Article and Find Full Text PDFExp Eye Res
September 2025
Cornea, Cataract and Refractive Surgery Unit, Vissum (Miranza Group), Alicante, Spain; Division of Ophthalmology, School of Medicine, Universidad Miguel Hernández, Alicante, Spain. Electronic address:
Corneal opacity remains a leading cause of global blindness, yet conventional corneal transplantation is constrained by donor scarcity, surgical limitations, and suboptimal long-term outcomes. In response, regenerative strategies are advancing to restore structural and functional integrity across all three corneal layers-epithelium, stroma, and endothelium-through cell-based and bioengineered therapies. Among these, induced pluripotent stem cells (iPSCs) have emerged as a versatile and scalable source capable of generating corneal-like cells under defined, xeno-free conditions.
View Article and Find Full Text PDF