Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polar lipids from dairy are novel sources of energy that may replace other dietary lipids and impact plasma lipidomic profiles in piglets. This study evaluated the impact of feeding diets rich in polar lipids on the plasma lipidome of piglets during the weaning period. Weaned male piglets ( = 240; 21 days of age; 6.3 ± 0.5 kg of BW) were blocked by initial weight and distributed into 48 pens of five animals each in a complete randomized block design with a 2 × 3 factorial arrangement of treatments as follows: a plant-based diet rich in neutral lipids from soybeans (24 pens; SD) or a polar lipid-rich diet by-product of cheese making (24 pens; PD) from weaning until the 21st day of the nursery phase. Within each diet group, animals received one of three milk replacers (MR; 0.5 L/d/animal) for the first 7 days after weaning: (1) commercial MR containing animal and coconut lipids (CO); (2) polar lipid-based MR (PO); or (3) soybean lipids-based MR (SO). The PD diet group increased the plasma concentrations of sphingolipids, phospholipids, and cholesterol esters, but did not impact the concentrations of glycerolipids (GLs). Both the PO and CO milk replacers increased the plasma concentrations of ceramide, acyl-chain phosphatidyl choline, and cholesterol esters. The plasma concentrations of GLs containing 18-carbon fatty acids such as 18:0, 18:1, 18:2, and 18:3, were higher in SD, whereas GLs containing 16:0 and 20:3 were higher in PD. In summary, the diet lipid type significantly modulated the plasma lipid composition in piglets 7 days after weaning. The dietary inclusion of polar lipids in diets for growing pigs can modulate the plasma lipidomic profile, relative to plant-based diets rich in soybean lipids. Cost may be a major consideration when using these lipids in pig diets. Their health benefits need to be further characterized in other models of stress and inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680061PMC
http://dx.doi.org/10.3390/metabo14120673DOI Listing

Publication Analysis

Top Keywords

plasma lipidomic
12
polar lipids
12
plasma concentrations
12
lipidomic profile
8
polar lipid-rich
8
lipids
8
diets rich
8
diet group
8
milk replacers
8
days weaning
8

Similar Publications

Vascular diseases are powerful predictors of cardiovascular mortality, but they are typically under-recognized and undertreated. There is no effective treatment for either abdominal aortic aneurysm (AAA) or peripheral artery disease (PAD). Lipids are key molecules in cardiovascular diseases and good candidates for diagnosis, monitoring, and risk prediction; nonetheless, there is very limited information on the lipidomic profile of patients with AAA and PAD.

View Article and Find Full Text PDF

Purpose: We have previously found that vitamin D and resistance exercise synergistically improve type 2 diabetes mellitus (T2DM)-related skeletal muscle atrophy. This study aims to investigate the impact of varying exercise intensity on synergistic effects of vitamin D and resistance exercise on their efficacy in improving type 2 diabetes mellitus (T2DM)-induced myopathy, and further elucidate the underlying mechanism.

Methods: We compared the effects of vitamin D combined with low-, moderate- and high-intensity resistance exercise on metabolic status and skeletal muscle function.

View Article and Find Full Text PDF

Sphingomyelin (SM) is primarily located in the outer leaflet of the plasma membrane. It plays a crucial role in intercellular communication and the morphology of neuronal cells by influencing the localization and function of various proteins. However, the mechanisms regulating the SM content in the neuronal plasma membrane remain largely elusive.

View Article and Find Full Text PDF

Background: The incidence of esophageal adenocarcinoma (EA) has significantly increased in developed Western countries. Despite medical advancements, the prognosis remains poor, with a 5-year survival rate of less than 20%. By 2024, the global incidence is expected to reach 141,300 new cases annually, underscoring the urgent need to elucidate the mechanisms underlying EA pathogenesis to develop effective preventive and therapeutic strategies.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) is the main cause of death worldwide. We aim to compare the differences in plasma lipid metabolites between AMI patients and normal controls to search for biomarker molecules for AMI with different infarct sites. We enrolled 12 patients in Group A (left coronary artery occlusion), 15 in Group B (right coronary artery occlusion), and 14 in Group C (normal controls) from June 2020 to June 2021.

View Article and Find Full Text PDF