98%
921
2 minutes
20
Background: Head and neck squamous cell carcinoma (HNSCC) presents significant treatment challenges, particularly in cases unrelated to human papillomavirus (HPV). The chemokine receptor CXCR4, interacting with its ligand CXCL12, plays a crucial role in tumor proliferation, metastasis, and treatment resistance. This study explores the therapeutic potential of engineered monomeric and dimerized CXCL12 variants (CXCL12 and CXCL12, respectively) in HNSCC and evaluates potential additive effects when combined with radiation therapy.
Methods: Clinical HNSCC biopsies were evaluated for CXCR4 expression in both previously untreated and radiorecurrent disease. HNSCC cell lines were then treated with combinations of CXCL12 variants and radiotherapy and interrogated for proliferation, gene expression change, and underlying molecular mechanisms. In vivo studies evaluated the biodistribution of engineered CXCL12 and tested these treatments in humanized cell line-derived xenograft (CDX) models.
Results: CXCL12 significantly reduced HNSCC cell proliferation and enhanced the effects of radiotherapy, likely through biased agonism at the CXCR4 receptor and upregulation of the KISS1R pathway. In vivo, CXCL12 localized to tumor sites and augmented the effects of radiation to inhibit tumor growth.
Conclusions: CXCL12, in combination with radiation, demonstrates potent anti-tumor effects in HNSCC. These findings support further clinical investigation of CXCL12 to enhance the effects of radiotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040585 | PMC |
http://dx.doi.org/10.1002/hed.28048 | DOI Listing |
Int J Biol Macromol
September 2025
Faculty of Applied Sciences, Macao Polytechnic University, Macao. Electronic address:
Osteosarcoma (OS), the most prevalent primary bone malignancy in adolescents, is characterized by aggressive progression and early metastasis. However, the epigenetic drivers of its metastatic heterogeneity remain poorly understood. Herein, we integrated bulk DNA methylation profiling and single-cell RNA sequencing (scRNA-seq) to elucidate the epigenetic mechanisms driving OS metastatic heterogeneity.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
School of Chinese Medicine, Wenzhou Medical University, Wenzhou 325035, China. Electronic address:
Background: The efficacy of Curcuma wenyujin (C. wenyujin) volatile oil components in the treatment of lung diseases, including pulmonary fibrosis (PF), is gradually being recognized. However, the anti-PF potential and underlying mechanisms of curcumenol (Cur), one of the Q-markers of C.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstraße 5, 40225, Duesseldorf, Germany.
Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening condition associated with high rates of morbidity and mortality, mainly due to post-hemorrhagic complications such as cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI). Recent evidence implicates platelet activation and inflammatory mediators in the cascade of secondary injury following aSAH. Monitoring and timely treatment of post-SAH complications is critical to improve clinical outcomes.
View Article and Find Full Text PDFFront Immunol
September 2025
Division of Allergy and Immunology, Department of Pediatrics and Medicine, Morsani College of Medicine, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States.
WHIM syndrome is typically caused by C-terminal gain-of-function variants in , yet clinical heterogeneity suggests additional genetic modifiers. We investigated a family in which the 22-year-old proband harbored two heterozygous variants: a novel missense variant, c.1022C>A (p.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
Pancreatic ductal adenocarcinoma (PDAC) remains a devastating malignancy characterized by profound lethality, aggressive local invasion, dismal prognosis, and significant resistance to existing therapies. Two critical biological features underpin the challenges in treating PDAC: extensive perineural invasion (PNI), the process by which cancer cells infiltrate and migrate along nerves, and a profoundly immunosuppressive, or "cold," tumor microenvironment (TME). PNI is not only a primary route for local tumor dissemination and recurrence but also a major contributor to the severe pain often experienced by patients.
View Article and Find Full Text PDF