WHIM syndrome is typically caused by C-terminal gain-of-function variants in , yet clinical heterogeneity suggests additional genetic modifiers. We investigated a family in which the 22-year-old proband harbored two heterozygous variants: a novel missense variant, c.1022C>A (p.
View Article and Find Full Text PDFWarts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome is a rare primary immunodeficiency disorder predominantly caused by germline CXCR4 variants. Bone marrow (BM) evaluation showing myelokathexis helps to establish the diagnosis of WHIM syndrome, but unfamiliarity with pertinent diagnostic features and variability in morphologic and clinical findings may result in disease underrecognition. We aimed to characterize the clinical, BM, and peripheral blood (PB) features of 30 patients with germline CXCR4 variants, including genotype-phenotype analysis and correlation between morphologic features and functional CXCR4 receptor internalization defect.
View Article and Find Full Text PDFBackground: WHIM (Warts, Hypogammaglobulinemia, Infections, and Myelokathexis) syndrome is an ultra-rare, combined primary immunodeficiency and chronic neutropenic disorder characterized by a range of clinical presentations, including peripheral neutropenia, lymphopenia, and recurrent infections. WHIM syndrome is most often caused by gain-of-function mutations in the gene encoding C-X-C chemokine receptor 4 (CXCR4). As such, inhibition of CXCR4 with XOLREMDI (mavorixafor), an orally bioavailable CXCR4 antagonist, demonstrated clinically meaningful increases in absolute neutrophil and lymphocyte counts and concomitant reduction in infections in patients with WHIM syndrome, resulting in its recent U.
View Article and Find Full Text PDFWarts, Hypogammaglobulinemia, Infections, Myelokathexis (WHIM) syndrome is a rare, combined immunodeficiency disease predominantly caused by gain-of-function variants in the gene that typically results in truncation of the carboxyl terminus of C-X-C chemokine receptor type 4 (CXCR4) leading to impaired leukocyte egress from bone marrow to peripheral blood. Diagnosis of WHIM syndrome continues to be challenging and is often made through clinical observations and/or genetic testing. Detection of a pathogenic variant in an affected individual supports the diagnosis of WHIM syndrome but relies on an appropriate annotation of disease-causing variants.
View Article and Find Full Text PDFWarts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome (WS) is a combined immunodeficiency caused by gain-of-function mutations in the C-X-C chemokine receptor type 4 (CXCR4) gene. We characterize a unique international cohort of 66 patients, including 57 (86%) cases previously unreported, with variable clinical phenotypes. Of 17 distinct CXCR4 genetic variants within our cohort, 11 were novel pathogenic variants affecting 15 individuals (23%).
View Article and Find Full Text PDFTissue fibrosis is a pathological condition characterized by uncontrolled fibroblast activation that ultimately leads to organ failure. The TGFβ1 pathway, one of the major players in establishment of the disease phenotype, is dependent on the transcriptional co-activators YAP/TAZ. We were interested whether fibroblasts can be sensitized to TGFβ1 by activation of the GPCR/YAP/TAZ axis and whether this mechanism explains the profibrotic properties of diverse GPCR ligands.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
May 2019
Idiopathic pulmonary fibrosis is a life-threatening progressive disease characterized by loss of alveolar epithelial cells, inflammation, and aberrant fibroblast activation. The two currently approved therapies do not halt or reverse tissue remodeling, and therefore novel disease-modifying mechanisms are needed. Our results describe YAP/TAZ inhibition through prostacyclin (IP) receptor activation as a novel mechanism that suppresses profibrotic (myo)fibroblast activity.
View Article and Find Full Text PDFThe Raf/MEK/ERK and PI3K/Akt pathways are prominent effectors of oncogenic Ras. These pathways negatively regulate each other, but the mechanism involved is incompletely understood. We now identify MEK1 as an essential regulator of lipid/protein phosphatase PTEN, through which it controls phosphatidylinositol-3-phosphate accumulation and AKT signaling.
View Article and Find Full Text PDFTransportin-SR2 (TRN-SR2 and TNPO3) is a cellular cofactor of HIV replication that has been implicated in the nuclear import of HIV. TRN-SR2 was originally identified in a yeast two-hybrid screen as an interaction partner of HIV integrase (IN) and in two independent siRNA screens as a cofactor of viral replication. We have now studied the interaction of TRN-SR2 and HIV IN in molecular detail and identified the TRN-SR2 interacting regions of IN.
View Article and Find Full Text PDF