98%
921
2 minutes
20
Utilizing the cGAS-STING pathway to combat immune evasion is one of the most promising strategies for enhancing cancer immunotherapy. However, current techniques for activating the cGAS-STING pathway often face a dilemma, mainly due to the balance between efficacy and safety. Here, we develop a uracil base lesion-gated dumbbell DNA nanodevice (UBLE) that allows on-demand activation and termination of the cGAS-STING pathway in tumor cells, thereby enhancing cancer immunotherapy. The UBLE integrates two deoxyuridines (dU) in the stem for DNA lesion recognition, two locked complementary primer sequences (primers A and B) for DNA self-assembly, and a Förster resonance energy transfer pair (Cy3 and Cy5) attached to the loop for activation assessment. Upon the orthogonal recognition of tumor-specific repair indicators (UDG and APE1), the UBLE undergoes a conformational change to create massive nicked double-stranded DNA (dsDNA) units. These units self-assemble to generate long fluorescent dsDNA structures, permitting selective evaluation and on-demand activation of the cGAS-STING pathway. Furthermore, we demonstrate that the UBLE can effectively activate the cGAS-STING pathway in tumor cells, enhancing NK cell-targeted cancer immunotherapy. This work develops a DNA lesion-gated strategy for on-demand activation and termination of the cGAS-STING pathway, affording an innovative avenue for enhancing cancer immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664422 | PMC |
http://dx.doi.org/10.1039/d4sc06493c | DOI Listing |
Redox Biol
September 2025
Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321,
Glioblastoma (GBM), the most prevalent and lethal primary malignancy of the central nervous system, remains refractory to conventional photon radiotherapy due to inherent limitations in dose distribution. Although carbon ion radiotherapy offers distinct advantages, including its characteristic Bragg peak deposition and superior relative biological effectiveness, its clinical application is constrained by high costs and increased toxicity. This study explores the radiobiological interactions underlying a mixed carbon ion-photon irradiation regimen, a promising strategy in advanced particle therapy.
View Article and Find Full Text PDFCrit Rev Immunol
September 2025
Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal,500078, Telangana State, India.
Caseinolytic protease P (ClpP) is a highly conserved serine protease that plays a pivotal role in protein homeostasis and quality control in bacteria, mitochondria of mammalian cells, and plant chloroplasts. As the proteolytic core of the ATP-dependent Clp protease complex, ClpP partners with regulatory ATPases (e.g.
View Article and Find Full Text PDFBioact Mater
December 2025
Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China.
Mitochondrial DNA (mtDNA) functions as an endogenous danger-associated molecular pattern that broadly activates the cGAS-STING pathway to potentiate antitumor immunotherapy. However, inefficient mtDNA release severely limits its ability to robustly activate downstream immune responses. Recent studies reveal that ferroptosis can trigger mtDNA release from damaged mitochondria into the cytosol, thereby stimulating antitumor immunity.
View Article and Find Full Text PDFFront Aging Neurosci
August 2025
Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
Introduction: Alzheimer's Disease (AD) is a common neurodegenerative disease among the elderly population. It has been posited that the onset and progression of AD are influenced by a combination of various factors. Occlusal support loss due to tooth loss has been reported to be a risk factor triggering cognitive dysfunction.
View Article and Find Full Text PDFFront Immunol
September 2025
Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China.
Background: Cisplatin (DDP) is a clinical first-line chemotherapy drug for hepatocellular carcinoma (HCC), but treatment is often ineffective due to drug resistance. Yes-associated protein 1 (YAP1) is a critical regulator/factor in HCC tumor progression. Our previous research showed that DDP promoted the expression of YAP1 in mice bearing H22 cell in situ liver tumors, which might be related to the poor therapeutic effect of DDP.
View Article and Find Full Text PDF