98%
921
2 minutes
20
Renewable electricity-driven CO electroreduction provides a promising route toward carbon neutrality and sustainable chemical production. Nevertheless, the viability of this route faces constraints of catalytic efficiency and durability in near-neutral electrolytes at industrial-scale current densities, mechanistically originating from unfavorable accommodation of H species from water dissociation. Herein, a new strategy is reported to accelerate water dissociation by the rich surface hydroxyl on bismuth subcarbonate nanosheets in situ electrochemical transformed from bismuth hydroxide nanotube precursors. This catalyst enables the electrosynthesis of formate at current densities up to 1000 mA cm with >96% faradaic efficiencies in flow cells, and a 200 h durable membrane electrode assembly in a dilute near-neutral environment. Combined kinetic studies, in situ characterizations, and theoretical calculations reveal that the atomic thickness strengthens the hydroxyl adsorption, and with a highly localized electron configuration, the hydroxyl-functionalized surface is more affinitive to oxygenated species, thus lowering the barrier for water dissociation and the crucial hydrogenation step in the proton-coupled electron transfer from OCHO to HCOOH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202415639 | DOI Listing |
J Colloid Interface Sci
September 2025
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:
Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan.
Desorption processes of HO molecules from AlO(HO) ( = 3, 5, 7) and AlO(HO)H ( = 4, 6, 8) clusters were investigated using gas-phase thermal desorption spectrometry to evaluate the HO storage capacity and mechanisms of aluminum oxide clusters. The clusters stored approximately 10 HO molecules at ∼300 K, depending on the size (), and released them upon heating. Even after heating to ∼1000 K, 2-4 HO molecules remained bound.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Smart Materials and Future Energy, Fudan University, Songhu Road 2005, Shanghai, 200438, P.R. China.
Solar-driven photocatalytic oxygen reduction reaction using covalent organic frameworks (COFs) offers a promising approach for sustainable hydrogen peroxide (HO) production. Despite their advantages, the reported COFs-based photocatalysts suffer insufficient photocatalytic HO efficiency due to the mismatched electron-proton dynamics. Herein, we report three one-dimensional (1D) COF photocatalysts for efficient HO production via the hydrogen radical (H•) mediated concerted electron-proton transfer (CEPT) process.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing 211189, China.
Developing efficient and durable catalysts for the oxygen evolution reaction (OER) in acidic media is essential for advancing proton exchange membrane water electrolysis (PEMWE). However, catalyst instability caused by lattice oxygen (O) depletion and metal dissolution remains a critical barrier. Here, we propose an oxophilic-site-mediated dynamic oxygen replenishment mechanism (DORM), in which O actively participates in O-O bond formation and is continuously refilled by water-derived species.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering, École Polytechnique Fédéralede Lausanne (EPFL), Lausanne 1015, Switzerland.
The challenge to produce multicarbon (C) products in high current densities in the electrochemical reduction of carbon dioxide (CORR) has motivated intense research. However, the ability of solvated cations to tune and activate water for C production in the CORR has been overlooked. In this study, we report the incorporation of a covalently grown layer of functionalized phenyl groups on the Cu surface that leads to a 7-fold increase in ethylene production (to -530 mA cm) and a 6-fold increase in C products (to -760 mA cm).
View Article and Find Full Text PDF