Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Parkinson's disease (PD) is a complicated neurological disease with an unclear pathogenesis. However, dysregulation of gut microbiota and inflammation response play crucial roles in the progression of PD. L., a traditional medicinal plant containing brazilin as its primary active compound, is known for its anti-inflammatory and neuroprotective properties. However, the impact of L. extract (SE) on PD through the regulation of the microbiota-gut-brain axis remains unclear. This study investigated the effects and mechanisms of a 91.23% brazilin-enriched SE on MPTP/p-induced PD mice. Results showed that SE significantly ameliorated motor deficits and protected dopaminergic neurons in PD mice. Additionally, SE reduced oxidative stress and inflammation in the brain. SE also restored gut microbiota by increasing Firmicutes and decreasing Bacteroidetes, alongside enhancing the production of short-chain fatty acids (SCFAs) like butyric acid. Furthermore, SE mitigated intestinal barrier damage by enhancing the expression of ZO-1 and occludin, thereby decreasing lipopolysaccharide leakage and inflammatory factor release. Molecular simulations suggested that butyric acid may maintain intestinal integrity by stabilizing ZO-I and occludin conformations. In conclusion, SE exhibited a protective effect on motor deficits and neurodegeneration in PD by regulating gut microbiota and SCFAs, repairing the intestinal barrier, and mitigating inflammatory responses.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.4c00679DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
motor deficits
12
deficits neurodegeneration
8
parkinson's disease
8
regulating gut
8
inflammatory responses
8
butyric acid
8
intestinal barrier
8
brazilin-rich extract
4
extract attenuated
4

Similar Publications

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF

This study investigated the impact of dietary zeolite supplementation on growth, cecal microbiota and digesta viscosity, digestive enzymes, carcass traits, blood constituents, and antioxidant parameters of broilers. A completely randomized design was used with 240 one-day-old broiler chicks randomly assigned to three dietary treatments (0%, 1.5%, and 3% zeolite as a feed additive) with four replicates of 20 chicks each.

View Article and Find Full Text PDF

The ketogenic diet (KD), a high-fat, low-carbohydrate regimen, has been shown to exert neuroprotective effects in various neurological models. This study explored how KD-alone or combined with antibiotic-induced gut microbiota depletion-affects cognition and neuroinflammation in aging. Thirty-two male rats (22 months old) were assigned to four groups (n = 8): control diet (CD), ketogenic diet (KD), antibiotics with control diet (AB), and antibiotics with KD (KDAB).

View Article and Find Full Text PDF

Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.

View Article and Find Full Text PDF

The multi-kingdom cancer microbiome.

Nat Microbiol

September 2025

Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.

Microbial influence on cancer development and therapeutic response is a growing area of cancer research. Although it is known that microorganisms can colonize certain tissues and contribute to tumour initiation, the use of deep sequencing technologies and computational pipelines has led to reports of multi-kingdom microbial communities in a growing list of cancer types. This has prompted discussions on the role and scope of microbial presence in cancer, while raising the possibility of microbiome-based diagnostic, prognostic and therapeutic tools.

View Article and Find Full Text PDF