98%
921
2 minutes
20
Receptor models have been widely used to identify pollution sources in the urban environment. However, evaluating the accuracy of source apportionment results for road deposited sediments (RDS) using these models has not been the focus of previous studies. This study compared canonical receptor models, i.e., positive matrix factorization (PMF), Unmix, chemical mass balance (CMB) and chemical mass-balance based stochastic approach (SCMD) using six synthetic datasets generated from real-world source profiles, and three error evaluation indicators (ie., relative error (RE), relative prediction error (RPE), and symmetric mean absolute percentage error (SMAPE)) were employed. The SCMD model showed more stable and accurate results, with ranges from 8.48 % - 30.76 %, 16.32-32.34 %, and 7.81-24.55 % of RE, RPE, and SMAPE, respectively. SCMD was then applied for tracking Pb, Zn, Cr, Cu, Ni, and Mn on urban road surfaces in Guangzhou, China. The results showed that vehicle exhaust, tire wear, roadside soil, and brake wear contributed 50.15 %, 41.15 %, 6.84 %, and 1.86 % of the mass of particulate solids, respectively; vehicle exhaust contributed more than half of these six heavy metals, particularly Cr and Ni. These findings provide scientific support for the effective selection of appropriate receptor models for source apportionment in RDS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.136912 | DOI Listing |
Mol Cancer Ther
September 2025
Case Western Reserve University School of Medicine, Cleveland, OH, United States.
The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor.
View Article and Find Full Text PDFCephalalgia
September 2025
Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.
Migraine is a complex neurological disorder involving multiple neuropeptides that modulate nociceptive and sensory pathways. The most studied peptide is calcitonin gene-related peptide (CGRP), which is a well-established migraine trigger and therapeutic target. Recently, another peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), has emerged as an alternative target for migraine therapeutics.
View Article and Find Full Text PDFSchizophr Bull
September 2025
Department of Psychology, Faculty of Health & Life Sciences, University of Exeter, Exeter, EX4 4QG, United Kingdom.
Background And Hypothesis: The dysconnectivity hypothesis of schizophrenia suggests that atypical neural communication underlies the disorder's diverse symptoms. Building on this framework, we propose that specific synaptic disturbances within thalamo-cortical circuits contribute to an imbalance in excitation and inhibition, leading to alteration in oscillations. Our study investigates these alterations and explores whether synaptic restoration can remediate neural activity of schizophrenia and align it with healthy patterns.
View Article and Find Full Text PDFSchizophr Bull
September 2025
Department of Psychiatry, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China.
Background And Hypothesis: Schizophrenia is linked to hippocampal dysfunction and microglial inflammatory activation. Our prior clinical findings revealed significantly reduced transient receptor potential vanilloid 1 (TRPV1) expression in both first-episode and recurrent schizophrenia patients, with levels inversely correlating with symptom severity, implicating TRPV1 dysfunction in disease progression. Preclinical maternal separation (MS) models recapitulate schizophrenia-like behavioral and synaptic deficits, paralleled by hippocampal microglial TRPV1 downregulation.
View Article and Find Full Text PDFBiophys J
September 2025
Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
The interplay between subcellular adhesion dynamics and cellular-scale deformations under shear flow drives key physiological and pathological processes. While both bond kinetics and fluid-cell interactions have been extensively studied in rolling adhesion, how bond characteristics quantitatively determine cellular velocity distributions remains unclear. In this study, we systematically investigate how force-free bond kinetics and intrinsic mechanical properties govern rolling adhesion dynamics, using macroscopic velocity distributions as a reference.
View Article and Find Full Text PDF