Complementary insights into gut viral genomes: a comparative benchmark of short- and long-read metagenomes using diverse assemblers and binners.

Microbiome

Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Bioinformatics and Systems Biology, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Metagenome-assembled viral genomes have significantly advanced the discovery and characterization of the human gut virome. However, we lack a comparative assessment of assembly tools on the efficacy of viral genome identification, particularly across next-generation sequencing (NGS) and third-generation sequencing (TGS) data.

Results: We evaluated the efficiency of NGS, TGS, and hybrid assemblers for viral genome discovery using 95 viral-like particle (VLP)-enriched fecal samples sequenced on both Illumina and PacBio platforms. MEGAHIT, metaFlye, and hybridSPAdes emerged as the optimal choices for NGS, TGS, and hybrid datasets, respectively. Notably, these assemblers recovered distinct viral genomes, demonstrating a remarkable degree of complementarity. By combining individual assembler results, we expanded the total number of nonredundant high-quality viral genomes by 4.83 ~ 21.7-fold compared to individual assemblers. Among them, viral genomes from NGS and TGS data have the least overlap, indicating the impact of data type on viral genome recovery. We also evaluated four binning methods, finding that CONCOCT incorporated more unrelated contigs into the same bins, while MetaBAT2, AVAMB, and vRhyme balanced inclusiveness and taxonomic consistency within bins.

Conclusions: Our findings highlight the challenges in metagenome-driven viral discovery, underscoring tool limitations. We advocate for combined use of multiple assemblers and sequencing technologies when feasible and highlight the urgent need for specialized tools tailored to gut virome assembly. This study contributes essential insights for advancing viral genome research in the context of gut metagenomics. Video Abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660840PMC
http://dx.doi.org/10.1186/s40168-024-01981-zDOI Listing

Publication Analysis

Top Keywords

viral genomes
20
viral genome
16
ngs tgs
12
viral
10
gut virome
8
tgs hybrid
8
assemblers viral
8
genomes
5
assemblers
5
complementary insights
4

Similar Publications

Description of a patient with multiple sclerosis (MS) who underwent immunotherapy with ocrelizumab and suffered a severe course of tick-borne encephalitis (TBE): A 33-year-old man presented with acute cerebellitis with tonsillar herniation. The initial suspected diagnosis of TBE was confirmed after a significant diagnostic delay, likely caused by negative serological testing due to B-cell depletion from ocrelizumab treatment for underlying MS. TBE diagnosis was made using polymerase chain reaction (PCR) and oligo-hybrid capture metagenomic next-generation sequencing (mNGS) of cerebral spinal fluid and brain biopsy samples which yielded a near-full length TBE Virus (TBEV) genome.

View Article and Find Full Text PDF

The size of microbial sequence databases continues to grow beyond the abilities of existing alignment tools. We introduce LexicMap, a nucleotide sequence alignment tool for efficiently querying moderate-length sequences (>250 bp) such as a gene, plasmid or long read against up to millions of prokaryotic genomes. We construct a small set of probe k-mers, which are selected to efficiently sample the entire database to be indexed such that every 250-bp window of each database genome contains multiple seed k-mers, each with a shared prefix with one of the probes.

View Article and Find Full Text PDF

Severe Fever with Thrombocytopenia Syndrome (SFTS), caused by the novel phlebovirus SFTSV (SFTS bunyavirus), was first identified in 2009 across several Chinese provinces, with a case fatality rate reaching 30 %. Given its compact genome, SFTSV critically depends on host cellular machinery for replication and pathogenesis. In this study, we employed a systematic strategy combining co-immunoprecipitation of viral-host complexes with formaldehyde crosslinking and affinity purification-mass spectrometry (AP-MS) to comprehensively map SFTSV-host interactions.

View Article and Find Full Text PDF

Kobuviruses (family Picornaviridae, genus Kobuvirus) are enteric viruses that infect a wide range of both human and animal hosts. Much of the evolutionary history of kobuviruses remains elusive, largely due to limited screening in wildlife. Bats have been implicated as major sources of virulent zoonoses, including coronaviruses, henipaviruses, lyssaviruses, and filoviruses, though much of the bat virome still remains uncharacterized.

View Article and Find Full Text PDF

Identification and Molecular Characterization of Two Novel Picorna-Like Viruses in Mosquitoes in Yunnan, China.

Vector Borne Zoonotic Dis

September 2025

Yunnan Province Key Laboratory of Public Health and Biosafety, Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, School of Public Health, Kunming Medical University, Kunming, P.R. China.

: Mosquitoes harbor diverse insect-specific viruses (ISVs) frequently overlooked in arbovirus surveillance. Comprehensive characterization of ISVs is crucial for understanding their impact on host ecology and potential roles in arbovirus transmission. : Using metagenomic sequencing on Armigeres subalbatus from Yunnan, China, we identified two novel picorna-like viruses, assembled their genomes, and conducted phylogenetic analysis.

View Article and Find Full Text PDF