Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ninety-nine percent of alpha-synuclein (α-syn) in the human body is distributed in erythrocytes. However, the role that α-syn plays in erythropoiesis remains unclear. To determine the effect of α-syn on erythroid differentiation, the erythroid cells, derived from human CD34+ progenitors in the umbilical cord, were cultured in a system composed of a series of cytokines and harvested after 6 days. Our work showed α-syn inhibition-promoted erythropoiesis as characterized by altered activity of surface markers of erythroid development such as CD49d, CD36, and CD71; and different methylation status of GDP-D-mannose dehydratase, aldolase fructose-bisphosphate A, and sorbitol dehydrogenase, key enzymes involved in fructose and mannose metabolism. Reduced adenosine triphosphate and elevated lactic acid also suggested a shift in cellular metabolism from mitochondrial respiration to glycolysis. Our study revealed a previously unknown role for α-syn as a methylation regulator that alters the activity of key enzymes of the fructose and mannose metabolism, thus contributing to erythropoiesis.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2024.0160DOI Listing

Publication Analysis

Top Keywords

fructose mannose
12
mannose metabolism
12
role α-syn
8
key enzymes
8
α-syn
5
alpha-synuclein inhibition
4
inhibition promotes
4
erythropoiesis
4
promotes erythropoiesis
4
erythropoiesis methylation
4

Similar Publications

A thermostable Cas9-based genome editing system for thermophilic acetogenic bacterium .

Appl Environ Microbiol

September 2025

Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China.

is a thermophilic acetogenic bacterium capable of thriving at elevated temperatures up to 66°C. It metabolizes carbohydrates such as glucose, mannose, and fructose and can also grow lithotrophically utilizing hydrogen (H) and carbon dioxide (CO) or carbon monoxide (CO), with acetate serving as its main product. A simple and efficient genome editing system for would not only facilitate the understanding of the physiological function of enzymes involved in energy and carbon metabolism but also enable metabolic engineering.

View Article and Find Full Text PDF

The co-infection of maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) causes maize lethal necrosis (MLN), which seriously affects the yield and quality of maize. Ubiquitination is one of the most important protein post-translational modifications. However, the role of ubiquitination modification in regulating maize resistance to viral infection remains largely unknown.

View Article and Find Full Text PDF

Ammonia-induced dispersion and proliferation of Actinobacillus pleuropneumoniae biofilms.

Microb Pathog

August 2025

National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430

Biofilm is a common status of bacteria persistent inside the host. Its dispersion can cause reactivation of bacteria, leading to disease outbreak. This study investigated ammonia's effects on Actinobacillus pleuropneumoniae, an important porcine respiratory pathogen.

View Article and Find Full Text PDF

-dependent glucose-6-phosphate dehydrogenase (FGD) catalyzes the oxidation of glucose-6-phosphate (G6P) to 6-phosphogluconolactone (6PG). Recent phylogenetic analyses have identified a new subclass of these enzymes, -dependent sugar-6-phosphate dehydrogenases (FSDs), which act on a broader range of 6-phosphate sugars, including fructose-6-phosphate (F6P) and mannose-6-phosphate (M6P). One such enzyme from (-FGD) was characterized by using binding assays and kinetic analyses, nuclear magnetic resonance (NMR), and mass spectrometry.

View Article and Find Full Text PDF

Background/objectives: Blunt cardiac injury (BCI) is a severe medical condition that may arise as a result of various traumas, including motor vehicle accidents and falls. The main objective of this study was to explore the role and underlying mechanisms of the TRPV4 gene in BCI. Elucidating the function of TRPV4 in BCI may reveal potential novel therapeutic targets for the treatment of this condition.

View Article and Find Full Text PDF