98%
921
2 minutes
20
In this study, the use of functionalized graphene quantum dots (GQDs) as a fluorescent probe has been investigated for the quantitative determination of galantamine, a choline esterase inhibitor used for the treatment of Alzheimer's disease. The GQDs exhibit a significant quenching in their fluorescence intensity upon interaction with galantamine allowing for sensitive and selective detection of the drug. This quenching process follows a dynamic pattern with a linear relationship between fluorescence intensity and the concentration of galantamine. Several factors affecting the quenching process were investigated and optimized, including the concentration of GQDs, the pH of the solution, and the incubation time. The proposed probe exhibited excellent analytical performance with a linear range of 10-500 ng/mL, a limit of detection of 15 ng/mL, accuracy of 100.78 ± 0.698%, and intraday and interday precision of 0.742 and 1.369%, respectively. Furthermore, the GQDs-based sensor exhibited good selectivity towards galantamine in the presence of potentially interfering substances. Another advantage of the GQDs-based sensor is its greenness evaluation, as it offers a more environmentally friendly alternative compared to traditional methods. In addition, the GQDs-based sensor was successfully applied to analyze galantamine in pharmaceutical samples and in vivo samples, demonstrating its potential for pharmacokinetics monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bio.70060 | DOI Listing |
Sci Rep
July 2025
Department of Technology, Shivaji University, Kolhapur, 416004, MS, India.
The increasing number of diabetic patients is a critical global challenge and monitoring of glucose level in blood via simple technique is of great importance. With this motivation, we have synthesized Graphene Quantum Dots (GQDs) for the detection of glucose. GQDs have significantly impacted the different fields of applications of bioengineering, pharmaceuticals, biomedicine, biosensors, fuel, energy, etc.
View Article and Find Full Text PDFLuminescence
December 2024
Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
In this study, the use of functionalized graphene quantum dots (GQDs) as a fluorescent probe has been investigated for the quantitative determination of galantamine, a choline esterase inhibitor used for the treatment of Alzheimer's disease. The GQDs exhibit a significant quenching in their fluorescence intensity upon interaction with galantamine allowing for sensitive and selective detection of the drug. This quenching process follows a dynamic pattern with a linear relationship between fluorescence intensity and the concentration of galantamine.
View Article and Find Full Text PDFSci Rep
December 2024
MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India.
This paper demonstrates screen-printing technique, Glass Screen printed (GSP) on glass layer with Graphene Quantum Dots (GQDs) via drop casting approach to manufacture electrodes for Miniaturized Microbial Fuel Cells (MMFCs). MMFCs are viable options to sustainably operate low-power devices such as sensors, implantable medical devices, etc. However, the technology is still not fully mature for practical applications due to limitations of output power.
View Article and Find Full Text PDFNanotechnology
September 2024
Department of Applied Physics, Kyung Hee University, Yongin 17104, Republic of Korea.
Semitransparent solar cells are attracting attention not only for their visual effects but also for their ability to effectively utilize solar energy. Here, we demonstrate a translucent solar cell composed of bis(trifluoromethane sulfonyl)-amide (TFSA)-doped graphene (Gr), graphene quantum dots (GQDs), and LaVO. By introducing a GQDs intermediate layer at the TFSA-Gr/LaVOinterface, we can improve efficiency by preventing carrier recombination and promoting charge collection/separation in the device.
View Article and Find Full Text PDFRSC Adv
August 2024
College of Chemistry, Zhengzhou University Zhengzhou 450001 China.
The development of stable fluorescent sensors for toxic pollutants and drugs is meaningful to the environment and public health. In this work, nitrogen-doped graphene quantum dots (N-GQDs) were facially synthesized by a one-step hydrothermal method using soluble starch and l-arginine as carbon and nitrogen sources in pure water at 190 °C for 4 h. The as-synthesized N-GQDs were well characterized and displayed blue fluorescence emission at 445 nm with excellent pH stability, salt tolerance, thermostability, photobleaching resistance and reproducibility.
View Article and Find Full Text PDF