Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Semitransparent solar cells are attracting attention not only for their visual effects but also for their ability to effectively utilize solar energy. Here, we demonstrate a translucent solar cell composed of bis(trifluoromethane sulfonyl)-amide (TFSA)-doped graphene (Gr), graphene quantum dots (GQDs), and LaVO. By introducing a GQDs intermediate layer at the TFSA-Gr/LaVOinterface, we can improve efficiency by preventing carrier recombination and promoting charge collection/separation in the device. As a result, the efficiency of the GQDs-based solar cell was 4.35%, which was higher than the 3.52% of the device without GQDs. Furthermore, the average visible transmittance of the device is 28%, making it suitable for translucent solar cells. The Al reflective mirror-based system improved the power conversion efficiency by approximately 7% compared to a device without a mirror. Additionally, the thermal stability of the device remains at 90% even after 2000 h under an environment with a temperature of 60 °C and 40% relative humidity. These results suggest that TFSA-Gr/GQDs/LaVO-based cells have a high potential for practical use as a next-generation translucent solar energy power source.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ad7b3dDOI Listing

Publication Analysis

Top Keywords

solar cell
12
translucent solar
12
graphene quantum
8
quantum dots
8
solar cells
8
solar energy
8
solar
7
device
5
enhancement photovoltaic
4
photovoltaic parameters
4

Similar Publications

Passivating detrimental defects is essential for improving perovskite solar cells (PSCs) performance. While hydrogen interstitials are often considered harmful, their role in defect passivation remains unclear. Using nonadiabatic molecular dynamics, we uncover a self-passivation mechanism between hydrogen (H) and bromine (Br) interstitials in all-inorganic CsPbBr perovskites.

View Article and Find Full Text PDF

This study presents a comprehensive first-principles and device-performance investigation of alkali metal-based anti-perovskites ZBrO (Z = K, Rb, Cs, and Fr) for advanced optoelectronic and photovoltaic applications. Using density functional theory (DFT) with GGA-PBE and mGGA-rSCAN functionals, we analyzed the structural, electronic, optical, mechanical, phonon, population, and thermoelectric properties of these compounds. All ZBrO materials exhibit direct band gaps and strong optical absorption in the visible-UV spectrum.

View Article and Find Full Text PDF

Long-Lived Charge-Transfer State and Interfacial Lock in Double-Cable Conjugated Polymers Enable Efficient and Stable Organic Solar Cells.

Angew Chem Int Ed Engl

September 2025

Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.

The donor/acceptor (D/A) interfaces in bulk heterojunction (BHJ) organic solar cells (OSCs) critically govern exciton dissociation and molecular diffusion, determining both efficiency and stability. Herein, we design a double-cable conjugated polymer, SC-1F, to insert into a physically-blended D/A system to optimize the interface. We have found that SC-1F spontaneously segregates to the interface through favorable miscibility and heterogeneous nucleation with the acceptor.

View Article and Find Full Text PDF

High Light Utilization and Color Rendering in Vacuum-Deposited Semitransparent Perovskite Solar Cells.

Adv Mater

September 2025

Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Calle Catedrático José Beltrán 2, Paterna, 46980, Spain.

Formamidinium lead iodide perovskite compositions have a low open circuit voltage deficit and thus a higher power conversion efficiency (PCE) potential. However, their low bandgap makes it difficult to achieve a semitransparent perovskite solar cell (ST-PSC) with a high average visible transmittance (AVT) and thus, a high light utilization efficiency (LUE). Attaining a high AVT in such low bandgap perovskite‑based semitransparent solar cells requires the perovskite layer to be very thin (thickness < ≈100 nm) and the rear electrode to be made of a transparent conductive oxide.

View Article and Find Full Text PDF

Objective: The objective of this work is to investigate different sunscreens and Viscogel group organoclays for the preparation of new intercalated sunscreens to improve the effectiveness and safety in photoprotection using new approach methodology (NAMs).

Methods: For this study, we examined Diethylamino hydroxybenzoyl hexyl benzoate (DHHB), octyl methoxycinnamate (OMC), Bemotrizinol (BEMT) and Viscogel S4®, S7®, and B8® using a set of Saccharomyces cerevisiae mutant strains that are sensitive to UVA, UVB and Solar Simulated Light (SSL) to evaluate their photoprotective and mutagenic potential. Additionally, we developed delaminated nanocomposites by chemical intercalation reactions followed by ultrasonic treatment to enhance clay exfoliation.

View Article and Find Full Text PDF