98%
921
2 minutes
20
Melatonin (MT) can improve plant resistance and fruit quality. The mechanism by which MT affects soluble sugar and organic acids accumulation in drupe fruits is not clear. In this study, 100 µmol/L MT was sprayed on the leaves of plum trees at the second stage of rapid fruit expansion (90 and 97 d after flowering), and the effects of MT on plum fruit quality and its effects on the soluble sugar-organic acid metabolism were investigated. At 28 d after MT treatment (at maturity), the longitudinal diameter, fruit weight, and vitamin C content of plum fruits were increased by 5.05%, 12.93%, and 56.09%, respectively, compared to the control. MT caused significant increase in the total soluble solids content and decreased the titratable acid content. MT increased the contents of total soluble sugar, sucrose, sorbitol, and citric acid after 21 and 28 days of treatment, while decreasing the contents of fructose, malic acid, quinic acid, and tartaric acid after 28 days of treatment. Additionally, MT increased the activities of sucrose synthase (catabolism direction), sucrose phosphate synthase, glucokinase, fructokinase, sorbitol oxidase, and NADP-malic enzyme, and decreased the activities of soluble acid converting enzyme, cell wall insoluble converting enzyme, NAD-sorbitol dehydrogenase, and NAD-malic dehydrogenase after 21 or 28 days of treatment. Moreover, the differentially expressed genes (DEGs) after 21 and 28 days of treatment were accelerated starch and sucrose metabolism, galactose metabolism, fructose and mannose metabolism, as well as glycolysis, gluconeogenesis, and pentose phosphate metabolism pathways. In conclusion, exogenous MT increases soluble sugar content and decreases organic acid content in plum fruits by regulating various soluble sugar-organic acid metabolic pathways, thereby improving the fruit quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656931 | PMC |
http://dx.doi.org/10.1186/s12870-024-05949-x | DOI Listing |
Pestic Biochem Physiol
November 2025
College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Jiangsu Province Engineering Research Center of Green Pesticides, Yangzhou University, Yangzhou 225009, China. Electronic address:
The brown planthopper (BPH), Nilaparvata lugens is a typical pesticide-induced resurgent rice pest. A previous study showed that a fungicide, jinggangmycin (JGM)-treated rice led to markedly increased sugar content and (Insulin-like Peptide 2) ILP2 in response to sugar-mediated TOR signaling and stimulated fecundity in BPH. However, the role of the other ILPs in response to types of carbohydrate compounds remained poorly understood.
View Article and Find Full Text PDFPlanta
September 2025
Plant Sciences and Agro-Technology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
The Fabaceae-specific review highlights the structural, functional, and phylogenetic diversity of UGTs, revealing clade-specific glycosylation mechanisms and novel sugar conjugations that contribute to legume adaptability. These insights offer promising avenues for metabolic engineering and stress-resilient crop development. UDP-glycosyltransferases (UGTs) are the biocatalysts modifying small molecules through glycosylation to enhance their solubility, stability, and bioactivity.
View Article and Find Full Text PDFPlant Physiol
September 2025
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
Lemon (Citrus limon L.), an economically important Citrus species, produces high levels of citric acid. However, the regulatory mechanisms underlying citric acid accumulation in lemon fruit are poorly understood.
View Article and Find Full Text PDFPlant Genome
September 2025
College of Agronomy, Hunan Agricultural University, Changsha, China.
Maize (Zea mays L.) is a globally significant crop, with its kernel sugar content playing a crucial role in determining nutritional quality and industrial applications. This study aimed to elucidate the genetic mechanisms underlying sugar-related traits in maize kernels through genome-wide association studies.
View Article and Find Full Text PDFJ Biomater Appl
September 2025
Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
Mechanotransduction plays a pivotal role in shaping cellular behavior including migration, differentiation, and proliferation. To investigate this mechanism more accurately further, this study came up with a novel elastomeric substrate with a stiffness gradient using a sugar-based replica molding technique combined with a two-layer PDMS system. The efficient water solubility of candy allows easy release, creating a smooth substrate.
View Article and Find Full Text PDF