98%
921
2 minutes
20
Leveraging the unique properties of quantum entanglement, quantum entanglement distribution networks support multiple quantum information applications and are essential to the development of quantum networks. However, practical implementation poses fundamental challenges to network scalability and flexibility. Here, we propose a reconfigurable entanglement distribution network scheme based on tunable multipump excitation of a spontaneous four-wave mixing (SFWM) source and a time-sharing method. We characterize the two-photon correlation under different pump conditions to demonstrate the effect of pump degenerate and pump nondegenerate SFWM processes on the two-photon correlation and its tunability. Then, as a benchmark application, a 10-user fully connected quantum key distribution network is established in a time-sharing way with triple pump lights. Our results provide a promising networking scheme for large-scale entanglement distribution networks owing to its scalability, functionality, and reconfigurability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11640999 | PMC |
http://dx.doi.org/10.1126/sciadv.ado9822 | DOI Listing |
Phys Rev Lett
August 2025
Universität Innsbruck, Institut für Experimentalphysik, Technikerstrasse 25, 6020 Innsbruck, Austria.
Establishing networks of quantum processors offers a path to scalable quantum computing and applications in communication and sensing. This requires first developing efficient interfaces between photons and multiqubit registers. In this Letter, we show how to entangle each individual matter qubit in a register of ten to a separate traveling photon.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Laboratory of Quantum Information, University of Science and Technology of China, 230026, Hefei, China.
Quantum imaging with spatially entangled photons offers advantages such as enhanced spatial resolution, robustness against noise, and counterintuitive phenomena, while a biphoton spatial aberration generally degrades its performance. Biphoton aberration correction has been achieved by using classical beams to detect the aberration source or scanning the correction phase on biphotons if the source is unreachable. Here, a new method named position-correlated biphoton Shack-Hartmann wavefront sensing is introduced, where the phase pattern added on photon pairs with a strong position correlation is reconstructed from their position centroid distribution at the back focal plane of a microlens array.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
This paper presents a strategy for noise suppression and stability enhancement of organic photodetectors (OPDs) by introducing pH-neutralized and transfer-laminated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the hole-transporting layer (HTL). Although PEDOT:PSS is widely used as an HTL material, its intrinsic acidity and structural instability hinder the performance of the OPD. Here, imidazole-induced neutralization promotes a linear entangled structure, while transfer lamination enables controlled PSS domain distribution.
View Article and Find Full Text PDFBiosens Bioelectron
December 2025
State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China. Electronic address:
Rapid, sensitive, and accurate detection of pathogen nucleic acids is critical for ensuring public safety and health. Nevertheless, current methods still encounter significant challenges. Field-effect transistor (FET) biosensors are renowned for high sensitivity, rapid response, and label-free detection.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemical Science, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
The response of two differently entangled, Zn-containing, pillared metal-organic frameworks (MOFs) toward quinolines and pyridines was studied. The corresponding products have been defined by single crystal X-ray diffraction analysis, when possible through single-crystal-to-single-crystal transformations. These two MOFs have similar chemical compositions, each consisting of a dicarboxylate linker (4,4'-biphenyldicarboxylate or 2,6-naphthalenedicarboxylate) and the same bis-amide-bis-pyridine pillar.
View Article and Find Full Text PDF