Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We demonstrated that the aspect ratio (AR)-tunable CdSe/CdS dot-in-rod (DiR) nanostructures with quasi-type-II band structure were successively synthesized using the hot injection method. When the AR of CdSe/CdS DiR was tuned from 10 to 37, the exciton localization efficiency along the longitudinal CdS rod shell decreased from 57.9 to 15.1%, resulting in a 5-fold improvement in the efficiency of photocatalytic hydrogen (H) evolution. The optimal CdSe/CdS DiR exhibited the highest H evolution rate of 2.11 mmol·g·h at an AR of 29 without any cocatalyst assistance. In situ transient absorption spectroscopy was employed to investigate the interfacial charge carrier dynamics of CdSe/CdS DiR during practical photocatalytic H evolution. The findings indicated that the half-life of delocalized electrons on the conduction band along the longitudinal CdS rod shell increases from 11.5 to 20.1 μs as the AR increased, demonstrating that the AR-dependent charge carrier dynamics significantly influences the photoactivity of CdSe/CdS DiR. This study provides valuable and novel insights into the tunability of charge carrier dynamics through AR manipulation in one-dimensional semiconductor nano-heterostructures for solar fuel generation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c03088DOI Listing

Publication Analysis

Top Keywords

charge carrier
16
carrier dynamics
16
cdse/cds dir
16
aspect ratio
8
cdse/cds dot-in-rod
8
photocatalytic hydrogen
8
hydrogen evolution
8
longitudinal cds
8
cds rod
8
rod shell
8

Similar Publications

Plasmonic nanoparticles boost low-current perovskite LEDs governed by photon recycling effects.

RSC Adv

September 2025

Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC C/Sor Juana Inés de la Cruz, 3 Madrid 28049 Spain

Perovskite light-emitting diodes (PeLEDs) have emerged as a promising technology for next-generation display and lighting applications, thanks to their remarkable colour purity, tunability, and ease of fabrication. In this work, we explore the incorporation of plasmonic spherical nanoparticles (NPs) directly embedded into the green-emitting CsPbBr perovskite layer in a PeLED as a strategy to enhance both its optical and electrical properties. We find that plasmonic effects directly boost spontaneous emission while also influencing charge carrier recombination dynamics.

View Article and Find Full Text PDF

Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.

View Article and Find Full Text PDF

Rational design of Pt-integrated SnNbO/BiMoO monolayer S-scheme heterojunction for efficient ethylene removal toward fresh produce preservation.

J Colloid Interface Sci

September 2025

Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, PR China. Electronic address:

Effective removal of ethylene (CH) during fruit and vegetables storage and transport remains a critical challenge for post-harvest preservation. Although S-scheme heterojunctions can improve charge separation and redox capacity for ethylene degradation, their efficiency is still restricted by limited carrier transfer and sluggish oxygen activation. Here, we rationally designed a novel 2D/2D SnNbO/BiMoO monolayer S-scheme heterojunction integrated with Pt co-catalyst to address these limitations.

View Article and Find Full Text PDF

On Refining Exciton Dissociation and Charge Transport of Nonfullerene Organic Photovoltaics: from Star-Shaped Acceptors to Molecular Doping.

Adv Mater

September 2025

College of Smart Materials and Future Energy, and State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, 200438, China.

Nonfullerene acceptor-based organic solar cells have recently taken a milestone leap with power conversion efficiencies approaching 20%. A key to further boost the efficiencies up to the Shockley-Queisser limit rests upon attaining a delicate balance between exciton dissociation and charge transport. This perspective presents two seminal and reciprocal strategies developed by our group and others to reconcile the intricacy of charge carrier dynamics, spanning from intrinsic molecular structure design to extrinsic dopant exploitation.

View Article and Find Full Text PDF

Interface Engineering Based on Naphthyl Isomerization for High-Efficiency and Stable Perovskite Solar Cells: Theoretical Simulation and Experimental Research.

Small

September 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.

Perovskites have a large number of intrinsic defects and interface defects, which often lead to non-radiative recombination, and thus affect the efficiency of perovskite solar cells (PSCs). Introducing appropriate passivators between the perovskite layer and the transport layer for defect modification is crucial for improving the performance of PSCs. Herein, two positional isomers, 1-naphthylmethylammonium iodide (NMAI) and 2-naphthylmethylammonium iodide (NYAI) are designed.

View Article and Find Full Text PDF