A portable, rapid isothermal amplification kit enabling naked eye detection of SARS-CoV-2 RNAs.

Talanta

Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; GMD BIOTECH, INC., Gwangju, 61005, Republic of Korea. Electronic address:

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Since the coronavirus disease 2019 (COVID-19) pandemic, isothermal amplification techniques have attracted attention due to their higher sensitivity and specificity, compared with immunoassays, and their potential application for point-of-care testing (POCT). A requirement of isothermal amplification-based POCT kits is the inclusion of a heating source with an electrical power supply. We developed an amplification-based rapid kit, which is a portable and naked eye-detectable reverse transcriptase (RT)-recombinase polymerase amplification (RPA) kit. The rapid RT-RPA kit consists of a flow-controllable paper chip, a nickel-chromium (NiCr)-based Joule-heating thin film, and a small-sized portable battery. We found that the Joule-heating thin film, powered by a lithium-ion battery (7.5 g, 20 mm × 35 mm size), was able to maintain the required temperature for the RPA reaction. After the RPA reaction, which takes approximately 20 min, the flow-controllable paper chip automatically enabled visualization of the amplicon by time-delayed release of gold nanoparticle-based optical probes. Using this system, we successfully detected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at levels as low as 10 copies μL, within 30 min.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.127327DOI Listing

Publication Analysis

Top Keywords

isothermal amplification
8
flow-controllable paper
8
paper chip
8
joule-heating thin
8
thin film
8
rpa reaction
8
portable rapid
4
rapid isothermal
4
kit
4
amplification kit
4

Similar Publications

Rolling circle amplification for next-generation molecular diagnostics, genome analysis, and spatial transcriptome profiling.

Nanoscale

September 2025

Department of Bioengineering & Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea.

Rolling circle amplification (RCA) has emerged as a highly versatile and robust isothermal amplification technology, offering exceptional sensitivity, specificity, and scalability for next-generation molecular diagnostics and multi-omics research. Its ability to generate long, repetitive DNA sequences with high fidelity has made it a pivotal tool in disease diagnostics, genomic analysis, and spatial transcriptome profiling. Recent advancements have expanded RCA into various formats, including solution-phase, solid-phase, hydrogel-based, and digital RCA, enhancing its analytical performance and adaptability across diverse biological applications.

View Article and Find Full Text PDF

Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) are important pathogens that are closely associated with hospital-acquired and community-acquired infections.

View Article and Find Full Text PDF

Grape white rot, caused by Coniella vitis, is a devastating disease that affects grape production in China and worldwide, resulting in substantial yield and quality losses. Early and accurate detection of C. vitis is critical for effective disease management.

View Article and Find Full Text PDF

Curable sexually transmitted infections (STIs) caused by the bacteria (CT) and (NG) are widespread globally. These infections are particularly dangerous for female patients, causing pelvic inflammatory disease, infertility, and increased risk of HIV acquisition. Vaginal self-swab sampling can improve access to STI screening but is still subject to treatment delays due to centralized processing.

View Article and Find Full Text PDF

A Novel Loop-Mediated Isothermal Amplification (LAMP) Assay for Detecting Salmonella Ser. Typhimurium in Egg Products.

J AOAC Int

September 2025

Office of Laboratory Operations and Applied Science, Human Foods Program, U.S. Food and Drug Administration, College Park, Maryland.

Background: As a leading cause of foodborne illness worldwide, detection of Salmonella enterica subsp. enterica serovar Typhimurium is essential for food safety and public health.

Objective: This study aimed to develop a loop-mediated isothermal amplification (LAMP) assay for the rapid and sensitive detection of Salmonella ser.

View Article and Find Full Text PDF