98%
921
2 minutes
20
Aims: The present study aims to investigate the in vitro antifungal activity and mechanism of action of bamemacrolactine C (BAC), a new 24-membered macrolide compound, against Talaromyces marneffei.
Methods And Results: The test drug BAC initially demonstrated antifungal activity through a paper disk diffusion assay, followed by determination of the minimum inhibitory concentration value of 35.29 μg ml-1 using microdilution. The association study revealed that combination therapy exhibited additive effects (0.5 < FICI < 1.0) when combined BAC with either amphotericin B or fluconazole. A time-growth assay confirmed that treatment with 35.29 μg ml-1 of BAC completely inhibited the growth of T. marneffei and exhibited antifungal effects. Micromorphological analysis using scanning electron microscopy and transmission electron microscopy photomicrographs revealed that BAC treatment induced morphological damage in fungal cells compared to the control group. Transmembrane protein assays showed a significant reduction in the levels of Na+/K+-ATPase (P < .05) and Ca2+-ATPase (P < .01) compared to the control group. Intracellular enzyme assays demonstrated that BAC treatment significantly decreased ATP, malate dehydrogenase, and succinate dehydrogenase content (P < .01). The combination of proteomics and parallel reaction monitoring (PRM) verification indicated that BAC exhibits an antifungal mechanism against T. marneffei by downregulating ATP citric acid lyase (ACLY) levels , potentially affecting the tricarboxylic acid (TCA) cycle. Besides, the binding model of BAC and the ACLY also shows a good docking score.
Conclusions: The findings suggest that BAC exhibits antifungal activity against T. marneffei, elucidating its multifaceted mechanism of action involving disruption of cell membranes' integrity and inhibition of intracellular enzyme activities, in which the modulation of ACLY in the TCA cycle may play an important role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jambio/lxae297 | DOI Listing |
FEMS Microbiol Lett
September 2025
Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Arthrospira platensis (Spirulina) is one the highly valuable cyanobacteria in food and pharmaceutical industry. The intracellular and extracellular polysaccharide (PS) extracts of A. platensis have been exhibited different biological functions.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China.
The emergence of severe resistance issues in plant pathogenic fungi poses a significant threat to the global quality and safety of crops. In this study, 36 novel derivatives featuring a 5,6,7,8-tetrahydroquinazolin structure were designed and synthesized for the first time. These 36 target compounds were subjected to tests against five fungal species.
View Article and Find Full Text PDFPhytopathology
September 2025
Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;
Osthole exhibits strong inhibitory activity against phytopathogenic fungi; however, its antifungal mechanism remains unclear. This study assessed osthole's inhibitory effects on several phytopathogenic fungi, revealing a half-maximal effective concentration of 70.03 μg/ml against the hyphal growth of .
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun, China.
Severe aplastic anemia (SAA) is a life-threatening bone marrow failure syndrome that is caused primarily by immune-mediated destruction of hematopoietic stem cells. Traditional treatment relies on immunosuppressive therapy (IST) with antithymocyte globulin (ATG) and cyclosporine (CSA). However, the toxicity and limited availability of ATG have spurred interest in ATG-free regimens.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia.
Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.
Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.