98%
921
2 minutes
20
Nonlinearities are fundamental to modern optical technologies. Exciton polaritons in semiconductor microcavities provide a promising route to strong nonlinearities. Monolayer TMDs, with tightly bound excitons and strong oscillator strength, enable polaritonic phenomena under ambient conditions but face challenges from weak polariton interactions due to small exciton Bohr radius. Although spatial confinement can boost polariton nonlinearity, the dynamics of trapped polaritons remain underexplored. Here we study the transient nonlinearities of confined polaritons in monolayer WS mesa cavities. We observe increasingly pronounced blueshifts within the first few picoseconds as trapping sizes decrease or excitonic fractions increase. Furthermore, our findings reveal that exciton-photon detuning, not trapping size, predominantly influences the time to reach the peak of transient nonlinearity. This insight aligns with the experimentally observed and theoretically simulated relaxation dynamics of trapped polaritons. Our findings pave the way for developing ultrafast all-optical polaritonic devices in TMD systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c04195 | DOI Listing |
Nano Lett
September 2025
Key Laboratory of Micro & Nano Photonic Structures, Department of Optical Science and Engineering, College of Future Information Technology, Fudan University, Shanghai 200433, China.
The separation and propagation of spin are vital to understanding spin-orbit coupling (SOC) in quantum systems. Exciton-polaritons, hybrid light-matter quasiparticles, offer a promising platform for investigating SOC in quantum fluids. By utilization of the optical anisotropy of materials, Rashba-Dresselhaus SOC (RDSOC) can be generated, enabling robust polariton spin transport.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Chemistry, Kyung Hee University, Seoul 02447, Korea.
Highly efficient optoelectronic devices of ultrasmall sizes are demanded as building blocks of next-generation integrated circuits, where tunable color enhances the feasibility of various applications. Here, we realize tunable multicolor nanolasers using disk-shaped axial heterostructures composed of III-nitride materials (GaN/InGaN/GaN), leveraging the optical confinement effect and active waveguiding. In heterostructure nanodisks, the development of exciton-polariton induces unique features near the resonance regime, and the formation of whispering-gallery modes facilitates optical gain processes for the polaritonic lasing of GaN.
View Article and Find Full Text PDFMicromachines (Basel)
August 2025
Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei.
Nanophotonics, the study of light-matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials-including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems-nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel applications in sensing, imaging, and quantum technologies. This review provides a comprehensive overview of recent advances (post-2020) in nanophotonic materials, fabrication methods, and their cutting-edge applications.
View Article and Find Full Text PDFMicroscopy (Oxf)
August 2025
International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China.
Scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) has emerged as a state-of-the-art characterization modality in materials science, undergoing transformative advancements over the past decade. Revolutionary developments in monochromator technology have pushed EELS energy resolution into the sub-10 meV regime, enabling investigations of low-energy excitations such as phonons, excitons, plasmons, and polaritons at nanometer and sub-nanometer scales, in addition to traditional core-loss spectroscopy. Besides to the high spatial resolution and high energy resolution, the coherent nature of STEM electron probes now allows momentum-resolved spectral information to be acquired, providing an ideal platform for correlating nanoscale structural features with functional properties at the nanometer and atomic level.
View Article and Find Full Text PDFAdv Mater
August 2025
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, Warsaw, PL-02-093, Poland.
Limitations of electronics have stimulated the search for novel unconventional computing platforms that enable energy-efficient and ultra-fast information processing. Among various systems, exciton-polaritons stand out as promising candidates for the realization of optical neuromorphic devices. This is due to their unique hybrid light-matter properties, resulting in strong optical nonlinearity and excellent transport capabilities.
View Article and Find Full Text PDF