Development and characterization of pyridyl carboxamides as potent and highly selective Na1.8 inhibitors.

Bioorg Med Chem Lett

Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. Electronic address:

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The voltage-gated sodium channel Na1.8 (SCN10A) has strong genetic and pharmacological validation as a potential target for treating acute and chronic pain. While several different chemotypes have been advanced as selective inhibitors, a quinoxaline carboxamide core structure was identified as a particularly attractive core structure due to very high sodium channel subtype selectivity. However, poor solubility and overall ADME properties need to be improved. Scaffold hopping to a central trifluoromethyl pyridine followed by optimization of distal substituents resulted in improved overall properties. Several advanced lead compounds have been identified with excellent potency, selectivity, solubility, and pharmacokinetics. Preliminary mechanism of action studies suggest that this class of compounds are voltage and state independent inhibitors that bind to a novel site on the Na1.8 channel.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2024.130059DOI Listing

Publication Analysis

Top Keywords

sodium channel
8
core structure
8
development characterization
4
characterization pyridyl
4
pyridyl carboxamides
4
carboxamides potent
4
potent highly
4
highly selective
4
selective na18
4
na18 inhibitors
4

Similar Publications

Tetrodotoxin (TTX), the pufferfish toxin, has the potential to cause fatal food poisoning because of its potent voltage-gated sodium channel (Na) blocking activity. 4-epiTTX, 11-norTTX-6(S)-ol, and 11-oxoTTX are the major TTX analogues found in marine animals; thus, their chemical properties and biological activities should be determined. In this study, these three TTX analogues were purified to a high level (purity >97%) from pufferfish and newts.

View Article and Find Full Text PDF

Fitness costs and resistance mechanisms to indoxacarb in a near-isogenic strain of Spodoptera exigua (Lepidoptera: Noctuidae).

Pestic Biochem Physiol

November 2025

State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China. Electronic address:

The beet armyworm, Spodoptera exigua has developed resistance to the commonly used insecticide indoxacarb. Understanding fitness costs and resistance mechanisms to indoxacarb in S. exigua is essential for developing effective field resistance management strategies.

View Article and Find Full Text PDF

Spodoptera frugiperda is a major crop pest that invaded Thailand in 2018 which cause significant damage, particularly to maize. In recent years, a loss of efficacy of certain insecticides has been observed, suggesting the emergence of resistance. The aim of our study was to investigate the molecular mechanisms of resistance in S.

View Article and Find Full Text PDF

HCN2 promotes neurodevelopmental and synaptic function repair through the CaMKII/CREB pathway to alleviate general anesthesia-induced cognitive impairment.

Cell Signal

September 2025

Department of Anesthesiology and Operation, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China. Electronic address:

Repeated exposure to gestational general anesthesia during pregnancy has been associated with neurodevelopmental damage and cognitive and social dysfunction in offspring. This study investigates the underlying mechanisms and therapeutic strategies for mitigating these effects. Behavioral tests revealed significant impairments in cognitive, social, and spatial learning abilities in the offspring of general anesthesia-treated mice, alongside delayed eye-opening, reduced body weight, and neuronal damage.

View Article and Find Full Text PDF

Functional validation of the Nav1.5/R1432G Brugada syndrome variant using a Nav1.5 knockout iPSC-derived cardiomyocyte model.

Biochem Biophys Res Commun

September 2025

CERVO Brain Research Centre, Quebec City, QC, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada. Electronic address:

Brugada syndrome is a rare inherited cardiac arrhythmia disorder primarily characterized by ventricular fibrillation, which can lead to sudden cardiac death. It follows an autosomal dominant pattern of inheritance and is most associated with dysfunction of the cardiac sodium channel Nav1.5.

View Article and Find Full Text PDF