Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

RNA modification has emerged as a crucial area of research in epigenetics, significantly influencing tumor biology by regulating RNA metabolism. N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification, the sole known acetylation in eukaryotic RNA, influences cancer pathogenesis and progression. NAT10 is the only writer of ac4C and catalyzes acetyl transfer on targeted RNA, and ac4C helps to improve the stability and translational efficiency of ac4C-modified RNA. NAT10 is highly expressed and associated with poor prognosis in pan-cancers. Based on its molecular mechanism and biological functions, ac4C is a central factor in tumorigenesis, tumor progression, drug resistance, and tumor immune escape. Despite the increasing focus on ac4C, the specific regulatory mechanisms of ac4C in cancer remain elusive. The present review thoroughly analyzes the current knowledge on NAT10-mediated ac4C modification in cancer, highlighting its broad regulatory influence on targeted gene expression and tumor biology. This review also summarizes the limitations and perspectives of current research on NAT10 and ac4C in cancer, to identify new therapeutic targets and advance cancer treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617596PMC
http://dx.doi.org/10.1002/mco2.70026DOI Listing

Publication Analysis

Top Keywords

ac4c modification
12
ac4c
9
nat10-mediated ac4c
8
tumor biology
8
ac4c cancer
8
tumor
5
rna
5
cancer
5
role mechanism
4
mechanism nat10-mediated
4

Similar Publications

DeepRNAac4C: a hybrid deep learning framework for RNA N4-acetylcytidine site prediction.

Front Genet

August 2025

Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China.

RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization.

View Article and Find Full Text PDF

RNA N4-acetylcytidine (ac4C) modification plays a vital role in gene regulation and cellular function. Accurate identification of ac4C sites is essential for elucidating their biological significance. However, existing prediction methods struggle to capture complex sequence patterns, limiting their accuracy.

View Article and Find Full Text PDF

Research progress on NAT10-mediated acetylation in normal development and disease.

Front Cell Dev Biol

August 2025

Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China.

N4-acetylcytidine (ac4C) is an evolutionarily conserved RNA modification catalyzed by the acetyltransferase NAT10. It regulates RNA stability, translation, and post-transcriptional processes. Meanwhile, NAT10 functions as a dual-function enzyme exhibiting both protein acetyltransferase and RNA acetylase activities.

View Article and Find Full Text PDF

Targeting the NAT10/XIST/YAP1 Axis-Mediated Vascular Abnormalization Enhances Immune Checkpoint Blockade in Gastric Cancer.

Int J Biol Sci

August 2025

Department of General Surgery & Nanfang Gastrointestinal Cancer Institute (NGCI), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.

Tumor vascular normalization has emerged as a promising strategy to potentiate immune checkpoint blockade in solid tumors. Here, we unveil a previously unrecognized NAT10/XIST/YAP1/VEGFA signaling axis driving vascular abnormalization in gastric cancer (GC) and demonstrate its therapeutic potential in remodeling the tumor immune microenvironment. Through integrative analysis of acetylated RNA immunoprecipitation sequencing (acRIP-seq) and functional validation, we identified NAT10-mediated N4-acetylcytidine (ac4C) modification as a critical stabilizer of lncRNA XIST.

View Article and Find Full Text PDF

Objectives: To elucidate the role of N-acetyltransferase 10 (NAT10) in pancreatic cancer (PC) progression and its epigenetic mechanisms, particularly in relation to metastasis.

Methods: TCGA and GTEx databases were used to analyze the expression and roles of NAT10 in pancreatic cancer. We constructed stable cell lines with NAT10 knockdown in PC cell lines, AsPC-1 and KPC.

View Article and Find Full Text PDF