Fibroblast diversification is an embryonic process dependent on muscle contraction.

Cell Rep

Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel. Electronic address:

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fibroblasts, the most common cell type found in connective tissues, play major roles in development, homeostasis, regeneration, and disease. Although specific fibroblast subpopulations have been associated with different biological processes, the mechanisms and unique activities underlying their diversity have not been thoroughly examined. Here, we set out to dissect the variation in skeletal-muscle-resident fibroblasts (mrFibroblasts) during development. Our results demonstrate that mrFibroblasts diversify following the transition from embryonic to fetal myogenesis prior to birth. We find that mrFibroblasts segregate into two major subpopulations occupying distinct niches, with interstitial fibroblasts residing between the muscle fibers and delineating fibroblasts sheathing the muscle. We further show that these subpopulations entail distinct cellular dynamics and transcriptomes. Notably, we find that mrFibroblast subpopulations exert distinct regulatory roles on myoblast proliferation and differentiation. Finally, we demonstrate that this diversification depends on muscle contraction. Altogether, these findings establish that mrFibroblasts diversify in a spatiotemporal embryonic process into distinct cell types, entailing different characteristics and roles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.115034DOI Listing

Publication Analysis

Top Keywords

embryonic process
8
muscle contraction
8
mrfibroblasts diversify
8
fibroblast diversification
4
diversification embryonic
4
process dependent
4
muscle
4
dependent muscle
4
fibroblasts
4
contraction fibroblasts
4

Similar Publications

Molecular subtypes of human skeletal muscle in cancer cachexia.

Nature

September 2025

Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.

Cancer-associated muscle wasting is associated with poor clinical outcomes, but its underlying biology is largely uncharted in humans. Unbiased analysis of the RNAome (coding and non-coding RNAs) with unsupervised clustering using integrative non-negative matrix factorization provides a means of identifying distinct molecular subtypes and was applied here to muscle of patients with colorectal or pancreatic cancer. Rectus abdominis biopsies from 84 patients were profiled using high-throughput next-generation sequencing.

View Article and Find Full Text PDF

The white matter of the spinal cord is essential for sensory and motor signaling, and its proper development is crucial for establishing functional neuronal circuits. However, the mechanisms underlying white matter formation remain incompletely understood. We hypothesized that the extracellular matrix, particularly laminins, plays a key role in this process.

View Article and Find Full Text PDF

CgCREM Regulates Haemocyte Proliferation and Inflammatory Factor Expression in the Pacific Oyster Crassostrea gigas.

Fish Shellfish Immunol

September 2025

Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China; Liaoning Key Laboratory of Mar

The cAMP response element modulator (CREM) is a regulatory transcription factor downstream of cAMP signaling, functioning either as a transcriptional activator or repressor in regulating the proliferation and differentiation of immune cells. In the present study, CgCREM with a conserved pKID domain and a BRLZ domain was identified from Pacific oyster Crassostrea gigas. The mRNA transcripts of CgCREM were found to be highly expressed in embryonic stages, especially in the blastula and trochophore.

View Article and Find Full Text PDF

Engineering human neuronal diversity: Morphogens and stem cell technologies for neurodevelopmental biology.

Stem Cell Reports

September 2025

Child Study Center, Yale University, New Haven, CT 06520, USA; Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA. Electronic

A complex assortment of neuronal cells contributes to distinct functional circuits in the human brain. Such diversity is imposed upon pluripotent stem cells by a patterning process that begins much before the start of neurogenesis. Neural tube patterning relies on morphogens-diffusible signals that regulate transcription factor networks in progenitor cells, guiding spatial and temporal identity formation.

View Article and Find Full Text PDF

Defining the Role of Integrins in Melanoblast Migration .

Mol Biol Cell

September 2025

Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.

During embryonic development, neural crest-derived melanoblasts, which are precursors of pigment-producing melanocytes, disperse throughout the skin by long-range cell migration that requires adhesion to the ECM. Members of the integrin family of cell-ECM adhesion receptors are thought to contribute to melanocyte migration . However, due to the functional redundancy between different integrin heterodimers, the precise role of integrins in melanoblast migration, as well as the mechanisms that regulate them in this process, especially in contexts, remain poorly understood.

View Article and Find Full Text PDF