98%
921
2 minutes
20
Conventional post-modification methods usually face the fundamental challenge of balancing the high content of functional groups and large surface area for porous organic polymers (POPs). The reason, presumably, stems from ineffective and insufficient swelling of the porous structure of POP materials, which is detrimental to mass transfer and modification of functional groups, especially with large-sized ones. It is important to note that significant differences exist in the porous structures of POP materials in a solvent-free state after thermal activation and solvent swelling state. Herein, we propose that the improvement of the swelling state of the porous structure of POP materials is more conducive to obtaining high-quality sulfonated POP materials, and employ a one-pot modification strategy for preparing sulfonated porous aromatic frameworks (PAFs) to prove the proposal. These results show that the specific surface area of the resulting polymer is 580 m g with a sulfur content of up to 13.2 wt%, which is superior to most sulfonated porous materials and the control sample. More importantly, we have also shown that the same conclusion is reached by performing similar treatments on hyper-crosslinked polymers (HCPs) and conjugated microporous polymers (CMPs), proving that our hypothesis is effective and feasible when compared to the conventional post-sulfonation method. The excellent hydrophilicity, rich content of sulfonic acid groups, high specific surface area and hierarchical pore structure make the resulting polymer an ideal adsorbent for micro-pollutants in water. The maximum adsorption capacities for Rhodamine B (RhB), Methylene Blue (MB), Tetracycline (TC) and Ciprofloxacin (CIP) are 1075 mg g, 1020 mg g, 826 mg g and 1134 mg g, respectively. This study not only demonstrates the preparation of efficient sulfonated porous adsorbents for the efficient removal of cationic dyes and antibiotics but also illustrates an effective method for constructing high-quality functional POP materials by optimizing the swelling state of the porous structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613706 | PMC |
http://dx.doi.org/10.1039/d4sc05329j | DOI Listing |
ACS Nano
September 2025
Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
Integration of ultrathin, high-quality gate insulators is critical to the success of two-dimensional (2D) semiconductor transistors in next-generation nanoelectronics. Here, we investigate the impact of atomic layer deposition (ALD) precursor choice on the nucleation and growth of insulators on monolayer MoS. Surveying a series of aluminum (AlO) precursors, we observe that increasing the length of the ligands reduces the nucleation delay of alumina on monolayer MoS, a phenomenon that we attribute to improved van der Waals dispersion interactions with the 2D material.
View Article and Find Full Text PDFColloids Surf A Physicochem Eng Asp
October 2025
Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA.
Purpose: ImmunoPET imaging of PD-L1 has emerged as a promising strategy for patient stratification and treatment response monitoring in immunotherapy. This study aimed to evaluate [Zr]Zr-DFO-Durvalumab in noninvasive imaging of PD-L1 expression in non-small cell lung cancer (NSCLC) and bladder cancer.
Materials And Methods: Durvalumab was conjugated with -SCN-Bn-DFO and labeled with [Zr]Zr-oxalate, achieving high radiochemical purity (> 99 %) and stability.
Environ Monit Assess
September 2025
Al-Karkh University of Science, Baghdad, Iraq.
POPs (POPs), including pesticides, pharmaceuticals, and industrial chemicals, pose severe environmental and health risks due to their persistence, bioaccumulation, and toxicity. While conventional methods like adsorption and biological treatment are widely used, their inefficiency in mineralizing POPs and generating secondary waste has driven interest in AOPs, particularly photocatalysis. This review examines recent advancements in photocatalytic materials and mechanisms for POP degradation, focusing on semiconductors such as TiO₂, doped catalysts, and visible-light-active composites.
View Article and Find Full Text PDFCureus
August 2025
Department of Morphological Disciplines, University of Oradea, Medicine and Pharmacy Faculty, Oradea, ROU.
Introduction Dietary intake patterns have a significant impact on overall health, affecting physical well-being through factors such as weight management, metabolic balance, and disease prevention. Additionally, diet affects psychological well-being by influencing mood, cognitive function, and emotional stability. The study evaluates the dietary habits of the adult population in Bihor County over a 10-year period, structured into three major intervals: the pre-pandemic years (2015-2019), the COVID-19 pandemic period (March 2020-March 2022), and the post-pandemic years (2023-2024).
View Article and Find Full Text PDFLife Sci
August 2025
Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Enginee
Aims: Sustained oxidative stress (OS) promotes the development of pelvic organ prolapse (POP); however, the pathogenesis of POP under OS conditions remains unclear. This study aimed to investigate the role of serum and glucocorticoid-induced protein kinase 1 (SGK1) in the progression of POP in OS and elucidate its potential molecular mechanisms.
Materials And Methods: The protein levels of SGK1 in fibroblasts and other cells within the uterosacral ligament tissues (ULTs) from patients with POP in OS were measured by immunofluorescence (IF).