Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Molybdenum disulfide (MoS) is a promising electronic material owing to its excellent electrochemical features, high carrier mobility at room temperature, and widely tunable electronic properties. Here, through precursor engineering and post-treatments to tailor their phase and doping, electronic characteristics of MoS are significantly modified. It is found that 2H semiconductor phase with nitrogen doping (N-doping) in flexible gas sensors constructed with Ag electrodes exhibits the highest sensitivity of ≈2500% toward 10 ppm of NO. This sensitivity is ≈17- and 417-folds higher than that of 2H MoS without N-doping, and mixed phases with metallic 1T and semiconductor 2H phase, respectively. Comprehensive experimental investigations reveal mechanisms underlying this record sensitivity, that is, the use of N-doped 2H MoS sensors not only significantly suppresses dark current but also effectively enhances electron transfer to NO molecules. Moreover, density function theory calculations underpin the experimental results, confirming that NH molecules from the precursor solution not only promote phase transition but also enable N-doping during post-treatments, thus boosting sensing capability. This work, for the first time, reveals the synergistic effect of phase modulation and N-doping of MoS, which can be readily used in other flexible electronic applications, advancing MoS-based electronics to a new stage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775570PMC
http://dx.doi.org/10.1002/advs.202410825DOI Listing

Publication Analysis

Top Keywords

phase modulation
8
modulation n-doping
8
n-doping mos
8
semiconductor phase
8
mos
6
n-doping
5
phase
5
synergetic phase
4
mos highly
4
highly sensitive
4

Similar Publications

Widefield acoustics heuristic: advancing microphone array design for accurate spatial tracking of echolocating bats.

BMC Ecol Evol

September 2025

Lehrstuhl für Zoologie, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 4, Freising, 85354, Germany.

Accurate three-dimensional localisation of ultrasonic bat calls is essential for advancing behavioural and ecological research. I present a comprehensive, open-source simulation framework-Array WAH-for designing, evaluating, and optimising microphone arrays tailored to bioacoustic tracking. The tool incorporates biologically realistic signal generation, frequency-dependent propagation, and advanced Time Difference of Arrival (TDoA) localisation algorithms, enabling precise quantification of both positional and angular accuracy.

View Article and Find Full Text PDF

Background And Purpose: Low-level light therapy (LLLT) has been shown to modulate recovery in patients with traumatic brain injury (TBI). However, the longitudinal impact of LLLT on brain metabolites has not been studied. The purpose of this study was to use magnetic resonance spectroscopic imaging (MRSI) to assess the metabolic response of LLLT in patients with moderate TBI at acute (within 1 week), subacute (2-3 weeks), and late-subacute (3 months) recovery phases.

View Article and Find Full Text PDF

From Growth to Survival: Aux/IAA Genes in Plant Development and Stress Management.

Plant Sci

September 2025

Fermentation and Phytofarming Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India. Electronic address:

Auxin, one of the earliest recognized and extensively investigated phytohormones, is crucial in plant growth and survival in adverse environmental conditions. Two gene families primarily regulate auxin signaling: auxin response factors (ARFs) and auxin/indole-3-acetic acid (Aux/IAA). Aux/IAA family proteins are recognized as essential elements of the nuclear auxin signaling system, inhibiting gene transcription in their presence and facilitating gene activation upon their degradation.

View Article and Find Full Text PDF

Gene dysregulation impairs placental angiogenesis in allogeneic pig pregnancies.

Anim Reprod Sci

September 2025

Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.

Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.

View Article and Find Full Text PDF

Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.

View Article and Find Full Text PDF