98%
921
2 minutes
20
Determining an effective dosing regimen for piperacillin-tazobactam in critically ill patients is challenging due to substantial pharmacokinetic variability caused by complex pathophysiological changes. To address this need, a prospective clinical study was conducted, which enrolled 112 critically ill patients and employed an opportunistic sampling strategy. Population modeling and simulation were performed to characterize the pharmacokinetics (PK) and probability of target attainment (PTA) of piperacillin-tazobactam under various dosing regimens. Both piperacillin and tazobactam final models were one-compartment models with zero-order input and first-order elimination. Significant covariates included lean body weight for piperacillin and creatinine clearance along with continuous renal replacement therapy (CRRT) for both drugs. Monte Carlo simulations demonstrated that continuous infusion can achieve higher PTA than intermittent and extended infusions. When considering the minimum inhibitory concentration (MIC) of 16 mg/L for Pseudomonas aeruginosa (a frequently encountered bacterial pathogen among critically ill patients) and a PK/PD target of 100% fT >MIC, continuous infusion of 6 g/day is recommended for critically ill patients with a CLcr <60 mL/min, 9 g/day for patients with CLcr in the range of 60 to 129 mL/min, and 12 g/day for patients with a CLcr ≥130 mL/min. In addition, extended infusion represents a good alternative, especially the 3 g q6h or 4 g q6h regimens which can achieve the designated European Committee on Antimicrobial Susceptibility Testing (EUCAST) non-species-related PK/PD breakpoint of 8 mg/L. Our study provided valuable insight into PTA outcomes, which, together with individual renal function of future patients and institution-specific piperacillin susceptibility patterns, may assist physicians when making dosing decisions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938006 | PMC |
http://dx.doi.org/10.1002/jcph.6161 | DOI Listing |
Expert Rev Med Devices
September 2025
Department of Physical Medicine and Rehabilitation, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Rae Bareli Road, Lucknow, Uttar Pradesh, INDIA 226014.
Introduction: The World Health Organization (WHO) reported in 2023 that approximately 1.3 billion people, or 16% of the global population, are living with a disability. Among these, locomotor disabilities constitute a significant portion, underscoring the urgent need for devices that enhance mobility and support daily living.
View Article and Find Full Text PDFBackground: Fluid management is a critical aspect of care in critically ill patients. While fluid overload has been linked to adverse outcomes, the balance between achieving a negative fluid balance and preserving kidney function presents a clinical challenge, and the significance of diuretic responsiveness in patients in the de-resuscitation phase remains unclear.
Objective: This study aimed to evaluate the association between forced diuresis, fluid balance, and clinical outcomes in ICU patients during the de- resuscitation phase.
Med Sci Monit
September 2025
Department of Anesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland.
Modern anesthesia, intensive care, and emergency medicine rely heavily on neuromuscular blocking agents (NMBAs), first introduced in 1942. These agents not only facilitate endotracheal intubation but also improve surgical conditions by suppressing muscle responses to stimuli. NMBAs function via depolarizing (eg, succinylcholine) or non-depolarizing mechanisms.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China.
This study aimed to develop a predictive model and construct a graded nomogram to estimate the risk of severe acute kidney injury (AKI) in patients without preexisting kidney dysfunction undergoing liver transplantation (LT). Patients undergoing LT between January 2022 and June 2023 were prospectively screened. Severe AKI was defined as Kidney Disease: Improving Global Outcomes stage 3.
View Article and Find Full Text PDFRespir Care
September 2025
Dr. Thomasian and Prof. Wunsch are affiliated with Department of Anesthesiology, Weill Cornell Medicine, New York, New York, USA.
Negative-pressure ventilation (NPV) is a form of noninvasive respiratory support in which an external subatmospheric pressure is applied to the thorax to facilitate lung expansion. Although largely supplanted by positive-pressure ventilation (PPV) in modern-day practice, NPV has garnered renewed interest as a potential noninvasive adjunct or alternative to PPV. Appropriate patient selection would be key, particularly in the ICU setting, where NPV is generally contraindicated in patients with severe upper airway obstruction, high oxygenation requirements, or absent airway reflexes.
View Article and Find Full Text PDF