98%
921
2 minutes
20
Adsorption energy is critical in catalysis, energy storage, and sensing. Optimal adsorption energy on a catalytic substrate is essential as extreme adsorption energy can reduce the reaction efficiency. Building on our previous research on the influence of work function on adsorption energy ( , , 3525-3530), we examined a range of two-dimensional semiconductor materials, including black phosphorene, boron nitride, and MoS, as supporting substrates for the construction of silicene-semiconductor heterojunctions. Furthermore, we analyzed how work function changes impact adsorption energy during O adsorption and developed a theoretical model to explain this relationship. The model was validated by demonstrating the regulation of the catalytic reaction barrier in the oxygen reduction reaction and was applied to N adsorption via high-throughput screening. Our findings demonstrate that the work function modulates the adsorption energy in van der Waals heterojunctions, enhancing catalytic efficiency. This approach aligns with the Sabatier principle and offers a pathway for optimizing catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c03385 | DOI Listing |
Chem Sci
September 2025
School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University Nanning 530004 P. R. China
To overcome the persistent challenges of sluggish lithium polysulfide (LiPS) conversion kinetics and the shuttle effect in Li-S batteries, this work introduces a novel, cost-effective thermal treatment strategy for synthesizing high-entropy metal phosphide catalysts using cation-bonded phosphate resins. For the first time, we successfully fabricated single-phase high-entropy FeCoNiCuMnP nanoparticles anchored on a porous carbon network (HEP/C). HEP/C demonstrates enhanced electronic conductivity and superior LiPS adsorption capability, substantially accelerating its redox kinetics.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Mi
Ammonia oxidation reaction (AOR) is critical for efficient ammonia utilization as a hydrogen carrier, yet state-of-the-art Pt-based catalysts suffer significant activity loss due to strong NO species (NO, NO) adsorption. Herein, Pd@Pt mesoporous core-shell nanospheres with interstitial Co in Pt shell (Pd@Pt-Co MCSN) are demonstrated as an excellent AOR electrocatalyst, which achieves a mass activity of 293.6 A g at 0.
View Article and Find Full Text PDFLangmuir
September 2025
Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
Aqueous Li-N batteries are promising electrochemical energy storage devices, but their reaction mechanisms remain controversial. This study employed density functional theory to investigate the catalytic mechanism of MB MBenes (M = Ti, Zr, Hf, Cr, Mo, and W) as cathodes for aqueous Li-N batteries. MB MBenes exhibit high conductivity due to strong d-electron states crossing the Fermi level.
View Article and Find Full Text PDFEnviron Res
September 2025
State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:
Recent interest in amendments derived from industrial by-products has highlighted their potential for both resource recycling and heavy metal remediation. Phosphate tailings (PT), primarily dolomite-based solid waste with low utilization rates, offer a promising yet underexplored solution. This study pioneers the thermal modification of PT into a novel amendment, thermally modified phosphate tailings (TPT), to assess its adsorption performance, underlying mechanisms, and effectiveness in immobilizing heavy metals in soils.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China. Electronic address:
Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.
View Article and Find Full Text PDF