Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The environmental dynamics of emerging pollutants were profoundly influenced by global climate change, attracting widespread attention to this complex interaction. However, single studies or reviews were insufficient to grasp, clarify, and predict the evolutionary characteristics and coupling patterns of emerging pollutants under global climate change. Here, 2389 research articles collected from the Web of Science Core Collection database for the period 2000-2023 were analyzed using systematic bibliometric visual analysis software. Results suggested a rapid growth trend in this field study, particularly accelerating after 2015. The United States, China, the United Kingdom, and Spain led in the volume of publications, forming a multidisciplinary research network centered on environmental science. Wastewater treatment, personal care products, pharmaceuticals, and heavy metals were identified as current research hotspots, with climate change emerging as the most prominent keyword. Research focus gradually shifted from single pollutants to multi-pollutant composite effects, from local issues to global-scale assessments, and from phenomenon description to mechanism analysis and risk evaluation. It is concluded that climate change is reshaping the environmental behaviors and ecological risks of emerging pollutants, and multidisciplinary, multi-scale research methods are urgent need. Future research is suggested to strengthen interdisciplinary collaboration, integrate climate and pollutant migration models, and investigate impacts of extreme climate events in depth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.177758DOI Listing

Publication Analysis

Top Keywords

climate change
20
emerging pollutants
16
global climate
12
environmental dynamics
8
dynamics emerging
8
climate
7
emerging
5
pollutants
5
change
5
investigating environmental
4

Similar Publications

Introduction: The climate crisis impacts global health and is exacerbated by the healthcare sector's emissions. Nurses, as the largest professional group, are key to promoting climate-resilient, low-carbon health systems. Integrating climate change and sustainable development into nursing education is crucial, yet gaps remain in understanding their representation in curricula and practice.

View Article and Find Full Text PDF

Adsorption-desorption behavior of difenoconazole onto soils: Kinetics, isotherms, and influencing factors.

Pestic Biochem Physiol

November 2025

National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, PR China. Electronic address: wj

Difenoconazole (DFC) is a commonly used triazole fungicide known for its high efficiency and environmental persistence. A thorough understanding of its environmental behavior, particularly sorption in soil, is critical to obtain a comprehensive assessment of the ecological risk of DFC. In this study, three soils with distinct physicochemical properties (brown soil, cinnamon soil, and fluvo-aquic soil) were used to elucidate the adsorption mechanisms of DFC on soil.

View Article and Find Full Text PDF

Climate change has heightened awareness of the health impacts of non-optimal temperatures (cold and heat), including the effect of gestational exposure and birth outcomes. However, temperature exposure assessment remains methodologically challenging due to unaccounted individual spatiotemporal mobility and adaptive behaviors, a gap that has not been adequately addressed in published studies. Using data from a prospective birth cohort in Guangzhou, China, conducted from 2017 to 2020, we assessed and compared three different exposure measures: home-based exposure, derived solely from ambient temperature data at residential locations; mobility-based exposure, incorporating individuals' spatiotemporal activities to capture dynamic environmental conditions; and AC & mobility-based exposure, an extension of the mobility-based approach that further integrates data on air-conditioning usage.

View Article and Find Full Text PDF

Discontinuation of Glacial Meltwater Input Reshapes the Diversity and Stability of Eukaryotic Planktonic Microbial Communities in Glacial Lakes.

Environ Res

September 2025

Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, Xizang University, Lhasa 850000, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:

Glacial lakes play a vital role as indicators of global climate change and regional environmental responses. Eukaryotic planktonic microorganisms, pivotal in driving biogeochemical cycling of nutrients within these ecosystems, are crucial for preserving stability and ecological function of glacial lake environments. Nevertheless, the spatial and temporal dynamics, along with the mechanisms responsible for sustaining eukaryotic planktonic microbial communities in glacial lakes, especially during the glacier retreat and lake formation, are still largely uncharted.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) plays a key role in grassland carbon biogeochemistry and shows sensitivity to global climate change, particularly nitrogen (N) deposition. We investigated the soil DOM molecular composition by UV-Vis and fluorescence spectroscopy, and FT-ICR MS through a N addition experiment (CK, N5, N10, N20, and N40 [0, 5, 10, 20, and 40 g N m-2 year-1, respectively]) in a desert steppe of northwest China. Moderate N inputs (N5-N20) caused a dose-dependent increase in DOM content (9.

View Article and Find Full Text PDF