98%
921
2 minutes
20
Background: Landscape fire-sourced (LFS) air pollution is an increasing public health concern in the context of climate change. However, little is known about the attributable global, regional, and national mortality burden related to LFS air pollution.
Methods: We calculated country-specific population-weighted average daily and annual LFS fine particulate matter (PM) and surface ozone (O) during 2000-19 from a validated dataset. We obtained the relative risks (RRs) for both short-term and long-term impact of LFS PM and O on all-cause, cardiovascular, and respiratory mortality. The short-term RRs were pooled from community-specific standard time-series regressions in 2267 communities across 59 countries or territories. The long-term RRs were obtained from published meta-analyses of cohort studies on all-source PM and O. Annual mortality, population, and socio-demographic data for each country or territory were extracted from the Global Burden of Diseases Study 2019. These data were used to estimate country-specific annual deaths attributable to LFS air pollution using standard algorithms.
Findings: Globally, 1·53 million all-cause deaths per year (95% empirical confidence interval [eCI] 1·24-1·82) were attributable to LFS air pollution during 2000-19, including 0·45 million (0·32-0·57) cardiovascular deaths and 0·22 million respiratory deaths (0·08-0·35). LFS PM and O contributed to 77·6% and 22·4% of the total attributable deaths, respectively. Over 90% of all attributable deaths were in low-income and middle-income countries, particularly in sub-Saharan Africa (606 769 deaths per year), southeast Asia (206 817 deaths), south Asia (170 762 deaths), and east Asia (147 291 deaths). The global cardiovascular attributable deaths saw an average 1·67% increase per year (p <0·001), although the trends for all-cause and respiratory attributable deaths were not statistically significant. The five countries with the largest all-cause attributable deaths were China, the Democratic Republic of the Congo, India, Indonesia, and Nigeria, although the order changed in the second decade. The leading countries with the greatest attributable mortality rates (AMRs) were all in sub-Saharan Africa, despite decreasing trends from 2000 to 2019. North and central America, and countries surrounding the Mediterranean, showed increasing trends of all-cause, cardiovascular, and respiratory AMRs. Increasing cardiovascular AMR was also observed in southeast Asia, south Asia, and east Asia. In 2019, the AMRs in low-income countries remained four times those in high-income countries, though this had reduced from nine times in 2000. AMRs negatively correlated with a country-specific socio-demographic index (Spearman correlation coefficients r around -0·60).
Interpretation: LFS air pollution induced a substantial global mortality burden, with notable geographical and socioeconomic disparities. Urgent actions are required to address such substantial health impact and the associated environmental injustice in a warming climate.
Funding: Australian Research Council, Australian National Health and Medical Research Council.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0140-6736(24)02251-7 | DOI Listing |
Arch Gerontol Geriatr
August 2025
Aging and Later Life, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Epidemiology and Data Science, Amsterdam, the Netherlands. Electronic address:
Background: Ageing in place has been promoted in the Netherlands to encourage optimal functional ability (FA) and independent living among older adults. FA is likely dependent on intrinsic capacity (IC), a composite measure of an individual's mental and physical capacities-and its interaction with the physical environment in which people live. This study aimed to examine the association between IC and FA, as well as to explore how the physical environment may modify this relationship in older adults.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; National Key Laboratory of Uranium Resources Prospecting and Nuclear Remote Sensing, East China University of Technology, Nanchang 330000, China.
Despite China being the world's largest producer of non-ferrous metals, a comprehensive understanding of heavy metal pollution from this industry is still lacking. This study examines the spatial coupling between heavy metal (Cd, Hg, As, Pb, and Cr) emission hotspots in China's non-ferrous metal mining industry (NFMMI), non-ferrous metal smelting and processing industry (NFMSPI) and environmental media- sensitive hotspots (water body density, cultivated land concentration, and atmospheric PM2.5) to characterize the multi-media pollution risks.
View Article and Find Full Text PDFEnviron Res
September 2025
Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China; National Institute of Health Data Science, Peking University, Beijing 100191, China; Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology, Beijing 1
Objective: The impact of desert-originated dust has been underestimated in fine particulate matters (PM)-related disease burden studies. This study aimed to assess the association of long-term dust PM exposure and all-cause mortality among older adults in China.
Methods: A cohort study using electronic health records (2010-2020) across Weinan, a city in northwest China, which experiences persistently high PM levels and frequent sand and dust storms, included 1,553,724 adults aged ≥45 years.
Environ Res
September 2025
Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.
Background: Fine particulate matter (PM) has been previously linked to cardiovascular diseases (CVDs). PM is a mixture of components, each of which has its own toxicity profile which are not yet well understood. This study explores the relationship between long-term exposure to PM components and hospital admissions with CVDs in the Medicare population.
View Article and Find Full Text PDFEnviron Pollut
September 2025
Taras Shevchenko National University of Kyiv, 90 Vasylkivska str., Kyiv 03022, Ukraine; Institute of Geophysics, Polish Academy of Sciences, Ksiecia Janusza 64, 01-452 Warsaw, Poland. Electronic address:
This study examines changes in air pollution by magnetic iron compounds and heavy metals, as identified through magnetic susceptibility and Fe, Zn, Cu, Mn, Pb, Ni, and Cr content measurements on air filters collected monthly during the pre-war (PW-01.2016-12.2018) and war (W-08.
View Article and Find Full Text PDF