Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The three-dimensional (3D) MHD mixed convection mode confined 3D wavy trapezoidal enclosure is examined. The bottom plane of the trapezoidal system is irregular, particularly a wavy plane with various undulation numbers [Formula: see text]. The forced convection phenomenon arises due to the displacement of the top region plane, whereas the porosity-enthalpy methodology characterizes the progression of charging. The heat transfer is enhanced using the nanoencapsulation phase change material (NePCM), consisting of Polyurethane as a shell and Nonadecane as a core, with water as the primary liquid base. The (GFEM) is used to treat the governing system, and a comparison between the HT (heat transmission) irreversibility and FF (fluid friction) irreversibility is performed using the function of the Be. The significant findings revealed that parabolic behaviors for the melting ribbon curve are given at lower values of Re and higher values of Ha. Also, reducing the undulation number is better for obtaining a higher heat transmission rate. The average Nusselt number was lowered by 60% and 19%, respectively, at the highest Reynolds number when the Hartmann number increased from 0 to 100 and N from 2 to 8. Also, the values of [Formula: see text] between 1 and 100 improve the heat transfer rates up to 51%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604975PMC
http://dx.doi.org/10.1038/s41598-024-80802-7DOI Listing

Publication Analysis

Top Keywords

mixed convection
8
wavy trapezoidal
8
phase change
8
change material
8
[formula text]
8
heat transfer
8
heat transmission
8
magnetic mixed
4
convection wavy
4
trapezoidal thermal
4

Similar Publications

Background: Micronutrient deficiencies are common in patients undergoing maintenance hemodialysis (MHD), potentially contributing to adverse clinical outcomes. Hemodiafiltration with endogenous reinfusion (HFR) integrates convection, diffusion, and adsorption, potentially preserving essential nutrients better than traditional online hemodiafiltration (HDF). This study aimed to compare the acute effects of HFR and HDF on serum micronutrient concentrations in MHD patients.

View Article and Find Full Text PDF

Focused Ultrasound (FUS) is the concentration of acoustic energy into a small region to produce therapeutic bioeffects. FUS-induced blood-brain barrier opening (BBBO), a strategy to deliver drugs and genes to the brain, also enhances glymphatic drainage, the brain-specific waste clearance system. Thus, FUS BBBO is a promising strategy for addressing the accumulation of neurotoxic solutes that are characteristic of many neurodegenerative diseases.

View Article and Find Full Text PDF

A planet's interior is a time capsule, preserving clues to its early history. We report the discovery of kilometer-scale heterogeneities throughout Mars' mantle, detected seismically through pronounced wavefront distortion of energy arriving from deeply probing marsquakes. These heterogeneities, likely remnants of the planet's formation, imply a mantle that has undergone limited mixing driven by sluggish convection.

View Article and Find Full Text PDF

Reduced Antarctic Bottom Water overturning rate during the early last deglaciation inferred from radiocarbon records.

Nat Commun

August 2025

Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA.

The rapid CO rise during the early deglaciation is often linked to enhanced ventilation by intensified Antarctic Bottom Water (AABW) overturning. The recorded radiocarbon ventilation seesaw during the early deglaciation, which describes improved Southern Ocean and reduced North Atlantic abyssal radiocarbon ventilation, has been interpreted as intensified AABW and reduced North Atlantic Deep Water convections. However, abyssal radiocarbon records also reflect changes in surface reservoir ages and interior water mass mixing.

View Article and Find Full Text PDF

The convective and absolute instabilities in electrohydrodynamic-Poiseuille mixed convection for viscoelastic fluids with the Oldroyd-B model are examined. In the absence of Poiseuille flow, based on the stationary and oscillatory characteristics at the onset of convection, we distinguish weakly and strongly elastic fluid, dominated by viscosity effects and elasticity effects, respectively. Their borderline of the two effects in terms of the critical electric Weissenberg W_{ec} satisfies the relation W_{ec}=a/(1-β)+b where β is viscosity ratio, and the parameters a and b depend on dimensionless ion mobility.

View Article and Find Full Text PDF