98%
921
2 minutes
20
The consumption of bivalves contaminated with paralytic shellfish toxins (PSTs) poses a serious risk to human health. However, the presence of PSTs in bivalves from the South Yellow Sea Mudflat remains unclear. This study comprehensively examined the characteristics and potential health risks of PSTs in eight species of bivalves from the South Yellow Sea Mudflat across four seasons. Typical PSTs, including STX, dcNeoSTX, GTX1, GTX2, GTX3, and GTX4, were detected in white clams, clams, short-necked clams, blue mussels, razor clams, mussels, scallops, and oysters. Significant differences of PSTs concentrations among bivalves across different seasons were detected using Kruskal-Wallis tests (p < 0.05), with the highest PSTs concentrations found in mussels (20.46 μg/individual) during autumn. Furthermore, Pearson tests revealed significant positive correlations between PSTs concentrations and shell length, shell height, shell width, and soft tissue wet weight, indicating that larger bivalves contain higher PSTs levels. The highest dietary toxin intake (DTI) of PSTs across the four seasons was found in mussels (2.138 μgSTX eq. kg⁻¹ bw day⁻¹) during autumn. Notably, the exposure risk index (ERI) from bivalve consumption for male consumers was 1.23 ± 0.819, which was higher than that for female consumers (1.102 ± 0.735). The ERI of PSTs for children aged 2-7 and the elderly over 65 were 1.448 ± 0.957 and 1.316 ± 0.874, respectively, which were higher than those for other age groups, indicating that children and the elderly are more sensitive to PSTs. It is important to note that most ERIs of PSTs from total tissues were higher than 1 (potential risk), while ERIs of PSTs from non-digestive tissues were lower than 1, suggesting that potential health risks could be reduced by removing the digestive tissues of bivalves before consumption. This study provides valuable information for mitigating health risks associated with bivalve consumption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2024.107174 | DOI Listing |
J Eval Clin Pract
September 2025
Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan.
Background: Chest radiography is often performed preoperatively as a common diagnostic tool. However, chest radiography carries the risk of radiation exposure. Given the uncertainty surrounding the utility of preoperative chest radiographs, physicians require systematically developed recommendations.
View Article and Find Full Text PDFPharmacotherapy
September 2025
Department of Biomedical Informatics, School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Background: Omeprazole, a widely used proton pump inhibitor, has been associated with rare but serious adverse events such as myopathy. Previous research suggests that concurrent use of omeprazole with fluconazole, a potent cytochrome P450 (CYP) 2C19/3A4 inhibitor, may increase the risk of myopathy. However, the contribution of genetic polymorphisms in CYP enzymes remains unclear.
View Article and Find Full Text PDFGenet Med
September 2025
Division of Medical Genetics, University of Washington School of Medicine.
Purpose: The fourth phase of the Electronic Medical Records and Genome Network (eMERGE4) is testing the return of 10 polygenic risk scores (PRS) across multiple clinics. Understanding the perspectives of health-system leaders and frontline clinicians can inform plans for implementation of PRS.
Methods: Fifteen health-system leaders and 20 primary care providers (PCPs) took part in semi-structured interviews.
J Magn Reson Imaging
September 2025
Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA.
Background: Cerebrovascular reactivity reflects changes in cerebral blood flow in response to an acute stimulus and is reflective of the brain's ability to match blood flow to demand. Functional MRI with a breath-hold task can be used to elicit this vasoactive response, but data validity hinges on subject compliance. Determining breath-hold compliance often requires external monitoring equipment.
View Article and Find Full Text PDFMult Scler
September 2025
Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
Background: Tumefactive demyelination (TD) is a rare variant of multiple sclerosis (MS) characterized by tumor-like lesions that often require aggressive management. Genome-wide association studies (GWAS) identified variants associated with MS; similar analyses in TD are lacking.
Objective: A GWAS was performed to identify variants associated with TD.