98%
921
2 minutes
20
Animals constantly face microbial challenges, and microbe-mediated infection protection is crucial for host survival. Identifying specific bacteria and their interactions with host intracellular surveillance systems is important but challenging. Here, we develop a "probiotics" screening system that identifies Escherichia coli mutants, such as ΔymcB, which protect hosts from Pseudomonas aeruginosa PA14 infection by activating the mitochondrial unfolded protein response (UPR). Genetic screening reveals that MDSS-1, a neuronal transmembrane protein, is crucial for sensing ΔymcB and triggering intestinal UPR. MDSS-1 functions as a potential receptor in ASE neurons, detecting ΔymcB and transmitting signals through neuropeptides, GPCRs, Wnt signaling, and endopeptidase inhibitors to activate intestinal UPRmt and enhance protection. Constitutive activation of MDSS-1 in ASE neurons is sufficient to induce UPR and confer infection resistance. This study uncovers a neuron-intestine communication mechanism, where ASE neurons detect bacteria and modulate the intestinal mitochondrial surveillance system for host adaptation to pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2024.115021 | DOI Listing |
Adv Sci (Weinh)
September 2025
Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Diso
Schizophrenia (SCZ) and bipolar disorder (BPD) are highly heritable psychiatric disorders with complex genetic and environmental underpinnings. Allele-specific expression (ASE) has emerged as a critical mechanism linking noncoding genetic variants to disease risk through epigenetic and environmental modulation. Here, whole-genome and transcriptome analyses of monozygotic twin pairs discordant for BPD or SCZ are performed, identifying that noncoding genetic variants drive differential ASE patterns of long noncoding RNAs (lncRNAs) in affected individuals compared to their unaffected co-twins.
View Article and Find Full Text PDFElife
August 2025
Department of Chemistry, Faculty of Science, Okayama University, Okayama, Japan.
A neuroanatomical minimal network model was revisited to elucidate the mechanism of salt concentration memory-dependent chemotaxis observed in memorizes the salt concentration during cultivation, manifesting a pronounced taste preference for this concentration. The right-side head sensory neuron, designated ASER, exhibits a response to a decrease in salt concentration. The basal level of glutamate transmission from ASER has been demonstrated to transiently increase and decrease when the current environmental salt concentrations are lower and higher, respectively, than that during previous cultivation.
View Article and Find Full Text PDFGenome Biol
July 2025
Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: Limited ancestral diversity has impaired our ability to detect risk variants more prevalent in ancestry groups of predominantly non-European ancestral background in genome-wide association studies (GWAS). We construct and analyze a multi-ancestry GWAS dataset in the Alzheimer's Disease Genetics Consortium (ADGC) to test for novel shared and population-specific late-onset Alzheimer's disease (LOAD) susceptibility loci and evaluate underlying genetic architecture in 37,382 non-Hispanic White (NHW), 6728 African American, 8899 Hispanic (HIS), and 3232 East Asian individuals, performing within ancestry fixed-effects meta-analysis followed by a cross-ancestry random-effects meta-analysis.
Results: We identify 13 loci with cross-population associations including known loci at/near CR1, BIN1, TREM2, CD2AP, PTK2B, CLU, SHARPIN, MS4A6A, PICALM, ABCA7, APOE, and two novel loci not previously reported at 11p12 (LRRC4C) and 12q24.
Glia
October 2025
Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
Microglia, the resident immune cells of the central nervous system (CNS), are in constant survey of their environment. Extracellular nucleotides, released by stressed and damaged neurons, act as danger signals to microglia through various purinergic/pyrimidinergic receptors. In the CNS, the UDP receptor P2Y6 is mostly expressed in microglia, where its activation induces phagocytosis, a homeostatic function that is dysregulated in several neurodegenerative diseases and in chronic pain.
View Article and Find Full Text PDFElife
June 2025
Department of Biology, California State University, Northridge, Northridge, United States.
Animals with small nervous systems have a limited number of sensory neurons that must encode information from a changing environment. This problem is particularly exacerbated in nematodes that populate a wide variety of distinct ecological niches but only have a few sensory neurons available to encode multiple modalities. How does sensory diversity prevail within this constraint in neuron number? To identify the genetic basis for patterning different nervous systems, we demonstrate that sensory neurons in respond to various salt sensory cues in a manner that is partially distinct from that of the distantly related nematode .
View Article and Find Full Text PDF