Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Na,K-ATPase is the active ion transport system that maintains the electrochemical gradients for Na and K across the plasma membrane of most animal cells. Na,K-ATPase is constituted by the association of two major subunits, a catalytic α and a glycosylated β subunit, both of which exist as different isoforms (in mammals known as α1, α2, α3, α4, β1, β2 and β3). Na,K-ATPase α and β isoforms assemble in different combinations to produce various isozymes with tissue specific expression and distinct biochemical properties. Na,K-ATPase α4β1 is only found in male germ cells of the testis and is mainly expressed in the sperm flagellum, where it plays a critical role in sperm motility and male fertility. Here, we report the molecular structure of Na,K-ATPase α4β1 at 2.37 Å resolution in the ouabain-bound state and in the presence of beryllium fluoride. Overall, Na,K-ATPase α4 structure exhibits the basic major domains of a P-Type ATPase, resembling Na,K-ATPase α1, but has differences specific to its distinct sequence. Dissimilarities include the site where the inhibitor ouabain binds. Molecular simulations indicate that glycosphingolipids can bind to a putative glycosphingolipid binding site, which could potentially modulate Na,K-ATPase α4 activity. This is the first experimental evidence for the structure of Na,K-ATPase α4β1. These data provide a template that will aid in better understanding the function Na,K-ATPase α4β1 and will be important for the design and development of compounds that can modulate Na,K-ATPase α4 activity for the purpose of improving male fertility or to achieve male contraception.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594824PMC
http://dx.doi.org/10.3390/ijms252212397DOI Listing

Publication Analysis

Top Keywords

nak-atpase α4β1
20
nak-atpase
12
structure nak-atpase
12
nak-atpase α4
12
molecular structure
8
male fertility
8
modulate nak-atpase
8
α4 activity
8
α4β1
5
α4β1 isoform
4

Similar Publications

Article Synopsis
  • Cancer cells need more energy (ATP) to grow and survive, which can change how they take in and balance sodium ions in their bodies.
  • The researchers used special methods to measure sodium levels and how fast cancer cells convert sugar into energy, comparing cancer cells to normal cells to see the differences.
  • They found that when they blocked a specific pump that controls sodium balance (Na/K-ATPase), the cancer cells had more sodium and produced less energy, showing that sodium levels affect their energy production.
View Article and Find Full Text PDF

Detection and quantification of Na,K-ATPase dimers in the plasma membrane of living cells by FRET-FCS.

Biochim Biophys Acta Gen Subj

July 2024

Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Box 1031, 171 21 Solna, Sweden; Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Box 1031, 171 21 Solna, Sweden.

The sodium potassium pump, Na,K-ATPase (NKA), is an integral plasma membrane protein, expressed in all eukaryotic cells. It is responsible for maintaining the transmembrane Na gradient and is the major determinant of the membrane potential. Self-interaction and oligomerization of NKA in cell membranes has been proposed and discussed but is still an open question.

View Article and Find Full Text PDF

High dietary lipid level promotes low salinity adaptation in the marine euryhaline crab ().

Anim Nutr

March 2023

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.

The physiological processes involved in adaptation to osmotic pressure in euryhaline crustaceans are highly energy demanding, but the effects of dietary lipids (fat) on low salinity adaptations have not been well evaluated. In the present study, a total of 120 mud crabs (, BW = 17.87 ± 1.

View Article and Find Full Text PDF

Retinoschisin (RS1) is a secreted protein that is essential for maintaining integrity of the retina. Numerous mutations in RS1 cause X-linked retinoschisis (XLRS), a progressive degeneration of the retina that leads to vision loss in young males. A key manifestation of XLRS is the formation of cavities (cysts) in the retina and separation of the layers (schisis), disrupting synaptic transmission.

View Article and Find Full Text PDF

An Introduction to Spiral Steroids.

Int J Mol Sci

August 2022

IOMA LLC, Belmont, CA 94002-3321, USA.

In addition to classical steroids, which have cholesterol as a precursor, there are steroids with 7-dehydrocholesterol as a precursor. This review describes the identification of these steroids, their biosynthesis, and some aspects of their function. There are three classes of these compounds, distinguished by the number of their carbon atoms, 23, 24, and 25.

View Article and Find Full Text PDF