Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hybrid nanoparticles formed by Silica (SiO) coated with cationic gemini surfactants with variable hydroxyl group substituted spacers, 12-4(OH)-12,2Br and 12-4(OH)-12,2Br have shown a great extent of compaction of calf thymus DNA (ct-DNA) compared to conventional counterpart cationic surfactant, dodecyl trimethylammonium bromide (DTAB). Study shows not only the hydrophobicity of the spacer but also the hydrogen bonding interactions between the hydroxyl group substituted spacer and DNA have a great role in DNA compaction. 12-4(OH)-12,2Br is more efficient in compacting ct-DNA compared to 12-4(OH)-12,2Br due to the stronger binding of the former with ct-DNA than the latter. While 12-4(OH)-12,2Br makes 50 % ct-DNA compaction at its 0.63 μM concentration in the presence of SiO nanoparticles, the same % of compaction can be achieved at a concentration as low as 0.25 μM of 12-4(OH)-12,2Br. However, DTAB makes 50 % ct-DNA compaction at a concentration as high as 7.00 μM under the same condition. Therefore, the present systems address the very common challenge, i.e., cytotoxicity due to cationic surfactants. The system of 12-4(OH)-12,2Br coated SiO nanoparticles displays the maximum cell viability (≥90 %), causing the least cell death in the mouse fibroblast cells (NIH3T3) cell lines compared to the cell viability of ≤80 % for DTAB. 12-4(OH)-12,2Br coated SiO nanoparticles system has presented excellent in vitro cellular uptake of genes on mouse mammary gland adenocarcinoma (4T1) cells after incubating for 3 h and 6 h. In vivo study shows that 12-4(OH)-12,2Br coated SiO nanoparticles system takes the highest amount of ct-DNA in cells and tumors in a time-dependent manner. The ex vivo studies using different organs of the mice demonstrate that the tumor sites in the breast of the mice are most affected by these formulations. Cytotoxicity assays and cellular uptake studies suggest that the present systems can be used for potential applications for gene delivery and oncological therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2024.113066DOI Listing

Publication Analysis

Top Keywords

sio nanoparticles
16
ct-dna compaction
12
hydroxyl group
12
group substituted
12
12-4oh-122br coated
12
coated sio
12
12-4oh-122br
9
nanoparticles formed
8
formed silica
8
gemini surfactants
8

Similar Publications

Benign prostatic hyperplasia (BPH) presents a significant clinical challenge, with conventional therapies carrying substantial risks, including urinary retention, sexual dysfunction, and prolonged recovery. To address the urgent need for safer, ultra-minimally invasive alternatives, we developed a sonosensitizing nanoplatform using copper-manganese-doped mesoporous silica nanoparticles (Cu-Mn@SiO) for ultrasound-induced sonodynamic therapy (SDT). Here, we demonstrate that this innovative strategy provides highly effective and precisely targeted therapy for BPH.

View Article and Find Full Text PDF

Detecting low-concentration foodborne viruses in complex samples has long posed a great challenge. Here, we propose a colorimetric enhancement-surface-enhanced Raman scattering (SERS) quantitative dual-mode immunochromatographic assay (ICA), characterized by high flexibility, sensitivity, and stability, which can rapidly and accurately detect viruses in various environments, including field, home, and clinical laboratory settings. A multifunctional SERS nanozyme tag (DSAIA) is customized using dendritic mesoporous SiO as the core, which is densely loaded with AuIr catalytic particles and coated with a layer of highly active 35 nm Au nanoparticles on the exterior, thereby simultaneously achieving monodispersity, strong peroxidase activity, and a high density of efficient SERS hotspots.

View Article and Find Full Text PDF

An innovative composite membrane was developed by combining polyvinylidene fluoride (PVDF) with graphene oxide (GO), titania (TiO), and silica (SiO) nanoparticles (PGTS). This innovative membrane was created using solution casting and electrospinning techniques to enhance its surface area and hydrophilic characteristics, while incorporating photocatalytic properties for light-induced oil decomposition. The membrane structure was examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR).

View Article and Find Full Text PDF

Effects of SiO Nanoparticles and Polymers on the Rheology of Fluorine-Free Foam.

ACS Omega

August 2025

College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.

To enhance the performance of fluorine-free firefighting foam, a mixed dispersion system comprising silica nanoparticles (SiO NPs), guar gum (GG), and surfactants was developed and systematically evaluated. Compared with systems containing only NPs or GG, the combined formulation significantly improved foam stability and rheological properties. The optimized GG-NPs formulation exhibited the lowest drainage volume and the highest storage modulus, indicating enhanced structural integrity.

View Article and Find Full Text PDF

In this study, nanofibrous scaffolds composed of Polycaprolactone/Collagen (PCL/COL) infused with FeO/Lanthanum/SiO nanocomposite were developed. FeO and La-doped FeO nanoparticles were synthesized using a straightforward co-precipitation method. Silica extracted from Ulmus leaves via green synthesis was used to coat the FeO-La nanocomposite.

View Article and Find Full Text PDF