Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the face of exponential data growth, DNA-based storage offers a promising solution for preserving big data. However, most existing DNA storage methods, akin to traditional block printing, require costly chemical synthesis for each individual data file, adopting a sequential, one-time-use synthesis approach. To overcome these limitations, a novel, cost-effective "DNA-movable-type storage" system, inspired by movable type printing, is introduced. This system utilizes prefabricated DNA movable types-short, double-stranded DNA oligonucleotides encoding specific payload, address, and checksum data. These DNA-MTs are enzymatically ligated/assembled into cohesive sequences, termed "DNA movable type blocks," streamlining the assembly process with the automated BISHENG-1 DNA-MT inkjet printer. Using BISHENG-1, 43.7 KB of data files are successfully printed, assembled, stored, and accurately retrieved in diverse formats (text, image, audio, and video) in vitro and in vivo, using only 350 DNA-MTs. Notably, each DNA-MT, synthesized once (2 OD), can be used up to 10000 times, reducing costs to $122/MB-outperforming existing DNA storage methods. This innovation circumvents the need to synthesize entire DNA sequences encoding files from scratch, offering significant cost and efficiency advantages. Furthermore, it has considerable untapped potential to advance a robust DNA storage system, better meeting the extensive data storage demands of the big-data era.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884572PMC
http://dx.doi.org/10.1002/advs.202411354DOI Listing

Publication Analysis

Top Keywords

dna storage
16
movable type
12
storage system
8
dna movable
8
existing dna
8
storage methods
8
dna
7
storage
6
data
6
cost-effective dna
4

Similar Publications

Controlling the Taxonomic Composition of Biological Information Storage in 16S rRNA.

ACS Synth Biol

September 2025

Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States.

Microbes can be programmed to record participation in gene transfer by coding biological-recording devices into mobile DNA. Upon DNA uptake, these devices transcribe a catalytic RNA (cat-RNA) that binds to conserved sequences within ribosomal RNAs (rRNAs) and perform a trans-splicing reaction that adds a barcode to the rRNAs. Existing cat-RNA designs were generated to be broad-host range, providing no control over the organisms that were barcoded.

View Article and Find Full Text PDF

Low-coverage sequencing refers to sequencing DNA of individuals to a low depth of coverage (e.g., 0.

View Article and Find Full Text PDF

The consumption of water of low microbiological quality can be detrimental and may cause significant health issues. Thus, amplicon sequencing can be an advantageous method to observe bacterial diversity in water. This study aimed to understand the complex bacterial communities present in natural mineral water packaged in 20 L returnable containers through amplicon sequencing.

View Article and Find Full Text PDF

Controlling for confounding factors in postmortem brain studies of psychiatric disorders is crucial, particularly in gene expression analyses. Potential confounding factors include sex, age at death, medication history, agonal state, postmortem interval (PMI), tissue storage duration, tissue pH, and RNA integrity number (RIN). pH and RIN are considered particularly important in gene expression analysis because they accurately reflect mRNA quality.

View Article and Find Full Text PDF

Ferritin is a shell-like carrier protein with an 8 nm diameter cavity that naturally provides a space for encapsulating food and drug components. In the absence of iron atoms bound to this protein, it is called apoferritin, the form used in this study. However, its vulnerability to environmental conditions when used alone warrants further investigation.

View Article and Find Full Text PDF