Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetic kidney disease (DKD) is the main cause of deaths due to diabetes mellitus (DM). Due to the complexity of its onset, it is difficult to achieve accurate prevention and treatment. The classically activated macrophage (M1) polarization is a crucial proinflammatory mechanism of DKD, while the interaction and cascade effects of oxidative stress and inflammatory response remain to be elucidated. A urine proteomic analysis of patients with DM indicated that peroxiredoxin 2 (PRDX2) had the higher abundance in DKD. We recently found that PRDX of parasitic protozoa Entamoeba histolytica, which was similar to human PRDX2 in amino acid sequence and spatial structure, could activate the inflammatory response of macrophages through toll-like receptor 4 (TLR4). Hence, our study was designed to explore the role of PRDX2 in chronic inflammation during DKD. Combined with in vivo and in vitro experiments, results showed that the PRDX2 was positively correlated with DKD progression and upregulated by high glucose or recombinant tumor necrosis factor-α in renal tubular epithelial cells; Besides, recombinant PRDX2 could promote M1 polarization of macrophages, and enhance the migration as well as phagocytic ability of macrophages through TLR4. In summary, our study has explored the novel role of PRDX2 in DKD to provide a basis for further research on the diagnosis and treatment of DKD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569199PMC
http://dx.doi.org/10.1038/s41598-024-79678-4DOI Listing

Publication Analysis

Top Keywords

novel role
8
diabetic kidney
8
kidney disease
8
classically activated
8
inflammatory response
8
role prdx2
8
dkd
7
prdx2
6
role peroxiredoxin
4
peroxiredoxin diabetic
4

Similar Publications

In-silico modeling of SHLP6: A novel mitochondrial peptide controlling neurodegeneration and cellular aging.

Comput Biol Med

September 2025

Institute of Biotechnology, Department of Medical Biotechnology, SIMATS Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India. Electronic address:

Small humanin-like peptide-6 (SHLP6), is derived from the mitochondrial genome. The 3D structure of SHLP6 was evaluated using PEPstr, with homology modeling predicting a Cyt-C structure with a DOPE score of -645.717 and a GA341 score of 0.

View Article and Find Full Text PDF

UCP2 is identified as a therapeutic target for abdominal aortic aneurysm by comprehensive bioinformatic analysis and experimental validation.

Biochem Biophys Res Commun

September 2025

Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Institute of Vascular Diseases, Central South University, Changsha, 410011, China. Electronic address:

Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular condition that currently lacks effective pharmacological treatment. The disease is strongly associated with chronic inflammation, where immune cells like macrophages play a crucial role. Efferocytosis, the process by which apoptotic cells are cleared, is involved in regulating inflammation.

View Article and Find Full Text PDF

Remodeling the sarcoma microenvironment by simultaneous targeting of urokinase-type plasminogen activator receptors and epidermal growth factor receptors to promote antitumor activity.

J Pharmacol Exp Ther

August 2025

Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Center for Immunology

We evaluated the antitumor effects of remodeling the MC17 mouse sarcoma microenvironment (SME) by targeting urokinase-type plasminogen activator receptor (uPAR)- and epidermal growth factor receptor (EGFR)-expressing cells. Specifically, we used eBAT (a bispecific ligand-targeted toxin directed to EGFR and uPAR), and its mouse counterpart, meBAT, to ablate uPAR- and/or EGFR-expressing cells. We chose the MC17 model because the cells are resistant to eBAT, allowing us to exclusively evaluate the role of uPAR- and EGFR-expressing cells in the SME.

View Article and Find Full Text PDF

Integrative physiology of skeletal muscle for maintaining cognitive health.

J Physiol

September 2025

Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA.

Cognitive decline and physical impairment are often linked with ageing, contributing to declines in health span and loss of independence in older adults. Pathological cognitive decline with age is largely considered to be a brain-centric challenge. However, recent findings have begun to challenge this paradigm as the health of peripheral systems, namely skeletal muscle, predict cognitive decline associated with Alzheimer's disease (AD).

View Article and Find Full Text PDF

DeepMobilome: predicting mobile genetic elements using sequencing reads of microbiomes.

Brief Bioinform

September 2025

Department of Computer Science, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.

Motivation: Mobile genetic elements (MGEs) play an important role in facilitating the acquisition of antibiotic resistance genes (ARGs) within microbial communities, significantly impacting the evolution of antibiotic resistance. Understanding the mechanism and trajectory of ARG acquisition requires a comprehensive analysis of the ARG-carrying mobilome-a collective set of MGEs carrying ARGs. However, identifying the mobilome within complex microbiomes poses considerable challenges.

View Article and Find Full Text PDF