Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The aim of this study was to develop and assess a radiomics model utilizing multiparametric magnetic resonance imaging (MRI) for the prediction of preoperative risk assessment in gastrointestinal stromal tumors (GISTs).

Material And Methods: An analysis was performed retrospectively on a group of 121 patients who received a histological diagnosis of GIST. They were then divided into two sets, with 85 in the training set and 36 in the validation set through random partitioning. Radiomics features from five MRI sequences, totaling 600 per patient, were extracted and subjected to feature selection utilizing a random forest algorithm. The discriminatory efficacy of the models was evaluated through receiver operating characteristic (ROC) and precision-recall (P-R) curve analyses. Model calibration was assessed via calibration curves. Subgroup analysis was performed on GISTs with a pathological maximum diameter equal to or less than 5 cm. Furtherly, Kaplan-Meier (K-M) curves and log-rank tests were used to compare the differences in survival status among different groups. Cox regression analysis was employed to identify independent prognostic factors and to construct a prognostic prediction model.

Results: The clinical model (Model) displayed limited predictive efficacy in the context of GIST. Conversely, a radiomics model (Model) incorporating five parameters exhibited robust discriminative capabilities across both the training and validation sets, yielding area under the ROC curve (AUC) values of 0.893 (95% confidence interval [CI]: 0.807-0.949) and 0.855 (95% CI: 0.732-0.978), respectively. The F1 scores derived from the P‑R curves were 0.741 and 0.842 for the training and validation sets, respectively. Noteworthy was the exclusion of the two-dimensional tumor diameter and tumor location when constructing a hybrid model (Model) that amalgamated radiomics and clinical features. Model demonstrated a substantially enhanced discriminative capacity in the training set compared with Model (p < 0.005). The net reclassification improvement (NRI) corroborated the superior performance of Model over Model, thereby enhancing diagnostic accuracy and clinical applicability. Patients in the high-risk group had significantly worse recurrence-free survival (RFS, p < 0.001) and overall survival (OS, p = 0.004), and the radiomics signature is an independent risk factor for RFS. The extended model incorporating the radiomics signature outperformed the baseline model in terms of risk assessment accuracy (p < 0.001).

Conclusion: Our investigation underscores the value of integrating radiomics analysis in conjunction with machine learning algorithms for prognostic risk stratification in GIST, presenting promising implications for informing clinical decision-making processes as well as optimizing management strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00117-024-01393-yDOI Listing

Publication Analysis

Top Keywords

model model
12
model
11
preoperative risk
8
gastrointestinal stromal
8
stromal tumors
8
multiparametric magnetic
8
magnetic resonance
8
resonance imaging
8
a radiomics model
8
analysis performed
8

Similar Publications

Systematic analyses uncover plasma proteins linked to incident cardiovascular diseases.

Protein Cell

August 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.

Cardiovascular disease (CVD) research is hindered by limited comprehensive analyses of plasma proteome across disease subtypes. Here, we systematically investigated the associations between plasma proteins and cardiovascular outcomes in 53,026 UK Biobank participants over a 14-year follow-up. Association analyses identified 3,089 significant associations involving 892 unique protein analytes across 13 CVD outcomes.

View Article and Find Full Text PDF

Ionic liquids (ILs) are a class of organic salts with melting points below 100°C. Owing to their unique chemical and physical properties, they are used as solvents and catalysts in various chemical transformations, progressively replacing common volatile organic solvents (VOCs) in green synthetic applications. However, their intrinsic ionic nature can restrict the use of mass spectrometric techniques to monitor the time progress of a reaction occurring in an IL medium, thus preventing one from following the formation of the reaction products or intercepting the reaction intermediates.

View Article and Find Full Text PDF

Introduction: We compared and measured alignment between the Health Level Seven (HL7) Fast Healthcare Interoperability Resources (FHIR) standard used by electronic health records (EHRs), the Clinical Data Interchange Standards Consortium (CDISC) standards used by industry, and the Uniform Data Set (UDS) used by the Alzheimer's Disease Research Centers (ADRCs).

Methods: The ADRC UDS, consisting of 5959 data elements across eleven packets, was mapped to FHIR and CDISC standards by two independent mappers, with discrepancies adjudicated by experts.

Results: Forty-five percent of the 5959 UDS data elements mapped to the FHIR standard, indicating possible electronic obtainment from EHRs.

View Article and Find Full Text PDF

Environmental Stresses Constrain Soil Microbial Community Functions by Regulating Deterministic Assembly and Niche Width.

Mol Ecol

September 2025

State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.

Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).

View Article and Find Full Text PDF