Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent developments in spatial transcriptomics (ST) technology have markedly enhanced the proposed capacity to comprehensively characterize gene expression patterns within tissue microenvironments while crucially preserving spatial context. However, the identification of spatial domains at the single-cell level remains a significant challenge in elucidating biological processes. To address this, SpaInGNN was developed, a sophisticated graph neural network (GNN) framework that accurately delineates spatial domains by integrating spatial location data, histological information, and gene expression profiles into low-dimensional latent embeddings. Additionally, to fully leverage spatial coordinate data, spatial integration using graph neural network (SpaInGNN) refines the graph constructed for spatial locations by incorporating both tissue image distance and Euclidean distance, following a pre-clustering of gene expression profiles. This refined graph is then embedded using a self-supervised GNN, which minimizes self-reconfiguration loss. By applying SpaInGNN to refined graphs across multiple consecutive tissue slices, this study mitigates the impact of batch effects in data analysis. The proposed method demonstrates substantial improvements in the accuracy of spatial domain recognition, providing a more faithful representation of the tissue organization in both mouse olfactory bulb and human lateral prefrontal cortex samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2024.11.006DOI Listing

Publication Analysis

Top Keywords

graph neural
12
gene expression
12
spatial
10
spatial transcriptomics
8
refined graph
8
spatial domains
8
neural network
8
expression profiles
8
graph
5
spaingnn
4

Similar Publications

Designing Buchwald-Hartwig Reaction Graph for Yield Prediction.

J Org Chem

September 2025

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.

The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.

View Article and Find Full Text PDF

The integration of multimodal single-cell omics data is a state-of-art strategy for deciphering cellular heterogeneity and gene regulatory mechanisms. Recent advances in single-cell technologies have enabled the comprehensive characterization of cellular states and their interactions. However, integrating these high-dimensional and heterogeneous datasets poses significant computational challenges, including batch effects, sparsity, and modality alignment.

View Article and Find Full Text PDF

Accurate vascular segmentation is essential for coronary visualization and the diagnosis of coronary heart disease. This task involves the extraction of sparse tree-like vascular branches from volumetric space. However, existing methods have faced significant challenges due to discontinuous vascular segmentation and missing endpoints.

View Article and Find Full Text PDF

The tumor microenvironment is a dynamic eco system where cellular interactions drive cancer progression. However, inferring cell-cell communication from non-spatial scRNA-seq data remains challenging due to incomplete li gand-receptor databases and noisy cell type annotations. H ere, we propose scGraphDap, a graph neural network frame work that integrates functional state pseudo-labels and graph structure learning to improve both cell type annotation an d CCC inference.

View Article and Find Full Text PDF

Large language models (LLMs) have demonstrated transformative potential for materials discovery in condensed matter systems, but their full utility requires both broader application scenarios and integration with ab initio crystal structure prediction (CSP), density functional theory (DFT) methods and domain knowledge to benefit future inverse material design. Here, we develop an integrated computational framework combining language model-guided materials screening with genetic algorithm (GA) and graph neural network (GNN)-based CSP methods to predict new photovoltaic material. This LLM + CSP + DFT approach successfully identifies a previously overlooked oxide material with unexpected photovoltaic potential.

View Article and Find Full Text PDF