Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Scratches and cracks in steel severely affect its service life and performance. However, owing to the irregular shapes and sizes of steel surface defects, defects within the same class may be different, whereas defects between classes may be similar. Existing methods focus only on spatial information, resulting in low detection accuracy. To alleviate these problems, this paper proposes the ECDY (EIFEM CARAFE DyHead) network to enhance the detection capability of steel defects. We first design a feature extraction module that focuses on the edge information of feature contours. This module uses the Sobel operator to extract the edge information of a feature and fuses it with the overall spatial information so that richer semantic information can be obtained. The module has improved accuracy in the YOLOv5, YOLOv8, and YOLOv10 versions, and uses fewer parameters and calculations. In particular, in YOLOv8x, mAP@0.5 increased by 2.5%, and the number of parameters was reduced by 12.4 M. Second, to retain the detailed information in the feature pyramid, and to better reconstruct features, we choose the content-aware reassembly feature method (CARAFE) as the upsampling method. Finally, the detection head was replaced with a dynamic unified detection head (DyHead) to adapt to different defect sizes and different task requirements. Compared with YOLOv8s, the proposed method improves precision by 1.6%, recall by 4%, and mAP@0.5 by 4%. This value is 4.2% higher than the mAP@0.5 of the current SOTA model RT-DETR-L in the field of object detection and has 23.2 M fewer parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557609PMC
http://dx.doi.org/10.1038/s41598-024-79205-5DOI Listing

Publication Analysis

Top Keywords

edge feature
12
feature extraction
8
sobel operator
8
fewer parameters
8
detection head
8
detection
6
feature
6
steel
4
steel defect
4
defect detection
4

Similar Publications

Optoelectronic polymer memristors with dynamic control for power-efficient in-sensor edge computing.

Light Sci Appl

September 2025

State Key Laboratory of Flexible Electronics, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China.

As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components.

View Article and Find Full Text PDF

Solvation Structure of Np in a Noncomplexing Environment.

Inorg Chem

September 2025

Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

The solvation structure of an Np ion in an aqueous, noncomplexing and nonoxidizing environment of trifluoromethanesulfonic (triflic) acid was investigated with X-ray absorption spectroscopy (XAS) combined with ab initio molecular dynamics (AIMD) and time-dependent density functional theory (TDDFT) calculations. Np L-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data were collected for Np in 1, 3, and 7 M triflic acid using a laboratory-scale spectrometer and separately at a synchrotron facility, producing data sets in excellent agreement. TDDFT calculations revealed a weak pre-edge feature not previously reported for Np L-edge XANES.

View Article and Find Full Text PDF

Multi-modal brain tumors segmentation is a critical step for diagnosing and monitoring brain-related disease. Many studies have developed models for this task, but two challenges remain, i.e.

View Article and Find Full Text PDF

Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .

View Article and Find Full Text PDF

The plateau pika () is a keystone species on the Qinghai-Tibet Plateau, and its population density-typically inferred from burrow counts-requires rapid, low-cost monitoring. We propose YOLO-Pika, a lightweight detector built on YOLOv8n that integrates (1) a Fusion_Block into the backbone, leveraging high-dimensional mapping and fine-grained gating to enhance feature representation with negligible computational overhead, and (2) an MS_Fusion_FPN composed of multiple MSEI modules for multi-scale frequency-domain fusion and edge enhancement. On a plateau pika burrow dataset, YOLO-Pika increases mAP50 by 3.

View Article and Find Full Text PDF