Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To study the diagnostic image quality of high b-value diffusion weighted images (DWI) derived from standard and variably reduced datasets reconstructed with a commercially available deep learning reconstruction (DLR) algorithm.

Materials And Methods: This was a retrospective study of 52 patients undergoing conventional prostate MRI with raw image data reconstructed using both conventional 2D Cartesian and DLR algorithms. Simulated shortened DWI acquisition times were performed by reconstructing images using DLR datasets harboring a reduced number of excitations (NEX). Two radiologists independently evaluated the image quality using a 4-point Likert scale. Signal-to-noise ratio (SNR) analysis was performed for the entire cohort and a subset of patients identified as having clinically significant prostate cancer identified at MRI, and later confirmed by pathology.

Results: Radiologists perceived less image noise for both restricted and large field of view (FOV) standard NEX dataset DLR diffusion images compared to conventionally reconstructed images with good interreader agreement. Diagnostic image quality was maintained for all DLR images using variably reduced NEX compared to conventionally reconstructed images employing the standard NEX. Improved signal to noise was observed for the restricted FOV DLR images compared to conventional reconstruction using standard NEX. DLR diffusion images derived from reduced NEX datasets translated to time reductions of up to 68 % and 39 % for the restricted and large FOV series acquisitions, respectively.

Conclusion: DLR of diffusion weighted images can reduce image noise at standard NEX and potentially reduce prostate MRI exam time when utilizing reduced NEX datasets without sacrificing diagnostic image quality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinimag.2024.110341DOI Listing

Publication Analysis

Top Keywords

image quality
16
standard nex
16
diffusion weighted
12
diagnostic image
12
dlr diffusion
12
reduced nex
12
images
9
deep learning
8
learning reconstruction
8
weighted images
8

Similar Publications

Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.

Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.

View Article and Find Full Text PDF

Rotator cuff tendinopathy is a common cause of shoulder pain and dysfunction, presenting in two primary forms: calcific and non-calcific. These subtypes differ significantly in their pathophysiology, clinical manifestations, and natural history, necessitating tailored diagnostic and therapeutic approaches. This review delineates the clinical presentations of calcific rotator cuff tendinopathy (RCCT), characterized by distinct pre-calcific, calcific, and post-calcific stages, and contrasts them with the more insidious, degenerative course of non-calcific rotator cuff tendinopathy.

View Article and Find Full Text PDF

Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.

Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.

View Article and Find Full Text PDF

Digital twins in nuclear medicine: A proposition of a modular pipeline for dosimetry protocol optimization in molecular radiotherapy.

Comput Struct Biotechnol J

August 2025

Institut de Recherche en Cancérologie de Montpellier (IRCM), Équipe Labellisée Ligue Contre le Cancer, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.

Digital twins (DTs) are emerging tools for simulating and optimizing therapeutic protocols in personalized nuclear medicine. In this paper, we present a modular pipeline for constructing patient-specific DTs aimed at assessing and improving dosimetry protocols in PRRT such as therapy. The pipeline integrates three components: (i) an anatomical DT, generated by registering patient CT scans with an anthropomorphic model; (ii) a functional DT, based on a physiologically-based pharmacokinetic (PBPK) model created in SimBiology; and (iii) a virtual clinical trial module using GATE to simulate particle transport, image simulation, and absorbed dose distribution.

View Article and Find Full Text PDF

Background: The use of artificial intelligence platforms by medical residents as an educational resource is increasing. Within orthopaedic surgery, older Chat Generative Pre-trained Transformer (ChatGPT) models performed worse than resident physicians on practice examinations and rarely answered questions with images correctly. The newer ChatGPT-4o was designed to improve these deficiencies but has not been evaluated.

View Article and Find Full Text PDF