Neutrophil and mononuclear leukocyte pathways and upstream regulators revealed by serum proteomics of adult and juvenile dermatomyositis.

Arthritis Res Ther

Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: Serum protein abundance was assessed in adult and juvenile dermatomyositis (DM and JDM) patients to determine differentially regulated proteins, altered pathways, and candidate disease activity biomarkers.

Methods: Serum protein expression from 17 active adult DM and JDM patients each was compared to matched, healthy control subjects by a multiplex immunoassay. Pathway analysis and protein clustering of the differentially regulated proteins were examined to assess underlying mechanisms. Candidate disease activity biomarkers were identified by correlating protein expression with disease activity measures.

Results: Seventy-eight of 172 proteins were differentially expressed in the sera of DM and JDM patients compared to healthy controls. Forty-eight proteins were differentially expressed in DM, 32 proteins in JDM, and 14 proteins in both DM and JDM. Twelve additional differentially expressed proteins were identified after combining the DM and JDM cohorts. C-X-C motif chemokine ligand 10 (CXCL10) was the most strongly upregulated protein in both DM and JDM sera. Other highly upregulated proteins in DM included S100 calcium binding protein A12 (S100A12), CXCL9, and nicotinamide phosphoribosyltransferase (NAMPT), while highly upregulated proteins in JDM included matrix metallopeptidase 3 (MMP3), growth differentiation factor 15 (GDF15), and von Willebrand factor (vWF). Pathway analysis indicated that phosphoinositide 3-kinase (PI3K), p38 mitogen-activated protein kinase (MAPK), and toll-like receptor 7 (TLR7) signaling were activated in DM and JDM. Additional pathways specific to DM or JDM were identified. A protein cluster associated with neutrophils and mononuclear leukocytes and a cluster of interferon-associated proteins were observed in both DM and JDM. Twenty-two proteins in DM and 24 proteins in JDM sera correlated with global, muscle, and/or skin disease activity. Seven proteins correlated with disease activity measures in both DM and JDM sera. IL-1 receptor like 1 (IL1RL1) emerged as a candidate global disease activity biomarker in DM and JDM.

Conclusion: Coordinate analysis of protein expression in DM and JDM patient sera by a multiplex immunoassay validated previous gene expression studies and identified novel dysregulated proteins, altered signaling pathways, and candidate disease activity biomarkers. These findings may further inform the assessment of DM and JDM patients and aid in the identification of potential therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552237PMC
http://dx.doi.org/10.1186/s13075-024-03421-7DOI Listing

Publication Analysis

Top Keywords

disease activity
28
jdm patients
16
proteins jdm
16
jdm
15
proteins
14
candidate disease
12
protein expression
12
differentially expressed
12
jdm sera
12
protein
9

Similar Publications

3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and excess coagulation. Antithrombin-binding HS (HSAT) is expressed in human tissues, but is thought to be expressed in the subendothelial space, mast cells, and follicular fluid.

View Article and Find Full Text PDF

Multi-omic analysis reveals a key BCAT1 role in mTOR activation by B-cell receptor and TLR9.

J Clin Invest

September 2025

Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, United States of America.

B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to distinct receptor stimuli remains incompletely understood. To gain insights, we systematically investigated acute primary human B-cell transcriptional, translational and metabolomic responses to B-cell receptor (BCR), Toll-like receptor 9 (TLR9), CD40-ligand (CD40L), interleukin-4 (IL4) or combinations thereof.

View Article and Find Full Text PDF

Synovial MS4A4A correlates with inflammation and counteracts response to corticosteroids in arthritis.

Proc Natl Acad Sci U S A

September 2025

Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.

MS4A4A belongs to the MS4A tetraspan protein superfamily and is selectively expressed by the monocyte-macrophage lineage. In this study, we aimed to evaluate the role of MS4A4A+ macrophages in rheumatoid arthritis (RA) pathogenesis and response to treatment. RNA sequencing and immunohistochemistry of synovial samples from either early treatment-naïve or active chronic RA patients showed that MS4A4A expression positively correlated with synovial inflammation.

View Article and Find Full Text PDF

Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.

View Article and Find Full Text PDF

Evaluation of subsp. antigens capable of stimulating host IRG-47 release identifies Mmm604, Mmm605, and Mmm606 as potential subunit vaccine antigens.

Infect Immun

September 2025

National Contagious Bovine Pleuropneumonia Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Contagious bovine pleuropneumonia (CBPP), caused by subsp. (Mmm), is a devastating cattle disease with high morbidity and mortality, threatening cattle productivity in Sub-Saharan Africa and potentially in parts of Asia. Cross-border livestock trade increases the risk of CBPP introduction or reintroduction.

View Article and Find Full Text PDF