Developing pioneering pharmacological strategies with CRISPR/Cas9 library screening to overcome cancer drug resistance.

Biochim Biophys Acta Rev Cancer

Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Research Unit for Blindness Prevention of Chinese Academy

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cancer drug resistance is a major obstacle to the effectiveness of chemoradiotherapy, targeted therapy, and immunotherapy. CRISPR/Cas9 library screening has emerged as a powerful genetic screening tool with significant potential to address this challenge. This review provides an overview of the development, methodologies, and applications of CRISPR/Cas9 library screening in the study of cancer drug resistance. We explore its role in elucidating resistance mechanisms, identifying novel anticancer targets, and optimizing treatment strategies. The use of in vivo single-cell CRISPR screens is also highlighted for their capacity to reveal T-cell regulatory networks in cancer immunotherapy. Challenges in clinical translation are discussed, including off-target effects, complexities in data interpretation, and model selection. Despite these obstacles, continuous technological advancements indicate a promising future for CRISPR/Cas9 library screening in overcoming cancer drug resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbcan.2024.189212DOI Listing

Publication Analysis

Top Keywords

crispr/cas9 library
16
library screening
16
cancer drug
16
drug resistance
16
screening
5
cancer
5
resistance
5
developing pioneering
4
pioneering pharmacological
4
pharmacological strategies
4

Similar Publications

EASY-edit: a toolbox for high-throughput single-step custom genetic editing in bacteria.

Nucleic Acids Res

September 2025

Expression génétique microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris 75005, France.

Targeted gene editing can be achieved using CRISPR-Cas9-assisted recombineering. However, high-efficiency editing requires careful optimization for each locus to be modified, which can be tedious and time-consuming. In this work, we developed a simple, fast and cheap method: Engineered Assembly of SYnthetic operons for targeted editing (EASY-edit) in Escherichia coli.

View Article and Find Full Text PDF

In agriculture, biosecurity, and human health, the rapid and accurate detection of pathogens and pests is crucial. Our study investigates the sensitivity and practicality of six guide RNA (gRNA) production methods for use in Nanopore Cas9-targeted sequencing (nCATS), focusing on their implications for multiplexed pathogen and pest detection. Each production method generated a library of eight gRNAs capable of excising ~ 1.

View Article and Find Full Text PDF

Celecoxib, a selective COX-2 inhibitor, has demonstrated anti-liver cancer effects in various preclinical models and clinical traits. However, prolonged use of celecoxib can lead to drug resistance, necessitating higher doses to maintain efficacy, which often results in severe side effects, limiting its clinical application. This study aimed to identify strategies to overcome celecoxib resistance in liver cancer.

View Article and Find Full Text PDF

The tumor suppressor DAB2IP, a RasGAP and cytoplasmic adaptor protein, modulates signal transduction in response to several extracellular stimuli, negatively regulating multiple oncogenic pathways. Accordingly, the loss of DAB2IP in tumor cells fosters metastasis and enhances chemo- and radioresistance. DAB2IP is rarely mutated in cancer but is frequently downregulated or inactivated by multiple mechanisms.

View Article and Find Full Text PDF

The CRISPR/Cas9 genome editing system has emerged as an effective platform to generate loss-of-function gene edits through non-homologous end joining (NHEJ) without a repair template. To verify whether small molecules can enhance the efficiency of CRISPR/ Cas9-mediated NHEJ gene editing in porcine cells, this experiment investigated the effects of six small-molecule compounds, namely Repsox, Zidovudine, IOX1, GSK-J4, YU238259, and GW843682X, on the efficiency of CRISPR/Cas9-mediated NHEJ gene editing. The results showed the optimal concentrations of the small molecules, including Repsox, Zidovudine, IOX1, GSK-J4, YU238259, and GW843682X, for in vitro-cultured PK15 viability.

View Article and Find Full Text PDF