98%
921
2 minutes
20
Enhancing irrigation and nitrogen fertilizer application has become a vital strategy for ensuring food security in the face of population growth and resource scarcity. A 2-year experiment was conducted to determine to investigate the effects of different irrigation lower limits and nitrogen fertilizer application amounts on millet growth, yield, water use efficiency (WUE), N utilization, and inorganic nitrogen accumulation in the soil in 2021 and 2022. The experiment was designed with four irrigation lower limits, corresponding to 50%, 60%, 70%, and 80% of the field capacity (FC), referred to as I, I, I, and I. Four nitrogen fertilizer application were also included: 0, 50, 100, and 150 kg·hm (designated as F, F, F, and F), resulting in a total of 16 treatments. Binary quadratic regression equations were established to optimize the irrigation and nitrogen application. The results demonstrated that the plant height, stem diameter, leaf area index, aboveground biomass, yield, spike diameter, spike length, spike weight, WUE, and nitrogen agronomic efficiency for millet initially increased before subsequently decreasing as the irrigation lower limit and nitrogen fertilizer application increased. Their maximum values were observed in the IF. However, the nitrogen partial factor productivity (PFPN) exhibited a gradual decline with increasing nitrogen application, reaching its peak at F. Additionally, PFPN displayed a pattern of initial increase followed by a decrease with rising irrigation lower limits. The accumulation of NO-N and NH-N in the 0~60 cm soil layer increased with the increase of nitrogen fertilizer application in both years, while they tended to decrease as the irrigation lower limit increased. An optimal irrigation lower limit of 64% FC to 74% FC and nitrogen fertilizer application of 80 to 100 kg ha was recommended for millet based on the regression equation. The findings of this study offer a theoretical foundation and technical guidance for developing a drip irrigation and fertilizer application for millet cultivation in Northeast China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548486 | PMC |
http://dx.doi.org/10.3390/plants13213067 | DOI Listing |
J Environ Manage
September 2025
School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China. Electronic address:
Microbial agents represent a valuable class of additives that can enhance the value and effectiveness of compost products. This paper provides a comprehensive review of the mechanisms and applications of microorganisms in regulating lignocellulose degradation, controlling gas emissions, and managing typical pollutants during the composting of organic solid wastes. Inoculation with microbial agents can significantly improve the degradation efficiency, quality, and environmental friendliness of compost.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
College of Life Sciences, Northwest Normal University, Lanzhou, China.
Nitrogen leaching is a major pathway of nitrogen fertilizer loss. Although arbuscular mycorrhizal (AM) fungi are known to reduce nitrogen leaching by improving plant nitrogen uptake, the soil-based mechanisms remain unclear. A pot experiment was conducted using a randomized complete block design, with four nitrogen levels (0, 3.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Agriculture, South China Agricultural University, Guangzhou, China.
Tobacco ( L.) is well-known as an economic crop whose quality is evaluated according to its aroma quality. Researchers have found that selenium application can increase the aroma quality of tobacco, but until now, its mechanism is still unclear.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs of China, Beijing, China.
Simultaneously enhancing the crop yield and reducing nitrous oxide (NO) emissions presents a critical challenge in sustainable agriculture. The application of nitrogen (N) fertilizer is a key strategy to enhance crop yield. However, conventional N application practices often lead to excessive soil N accumulation, insufficient crop N uptake and elevated greenhouse gas (GHG) emissions.
View Article and Find Full Text PDFFront Plant Sci
August 2025
School of Biosciences, University of Sheffield, Sheffield, United Kingdom.
Drought has a major impact on crop yields. Silicon (Si) application has been proposed to improve drought resilience via several mechanisms including modifying the level of stomatal gas exchange. However, the impact of Si on transpiration and stomatal conductance varies between studies.
View Article and Find Full Text PDF