98%
921
2 minutes
20
3D printing has garnered significant attention across academia and industry due to its capability to design and fabricate complex architectures. Applications such as those requiring intricate geometries or custom designs, including footwear, healthcare, energy storage, and electronics applications, greatly benefit from exploiting 3D printing processes. Despite the recent advancement of structural 3D printing, its use in functional devices remains limited, requiring the need for the development of functional materials suitable for 3D printing in device fabrication. In this review, we briefly introduce various 3D printing techniques, including material extrusion and vat polymerization, and highlight the recent advances in 3D printing for energy and biomedical devices. A summary of future perspectives in this area is also presented. By highlighting recent developments and addressing key challenges, this review aims to inspire future directions in the development of functional devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547392 | PMC |
http://dx.doi.org/10.3390/molecules29215159 | DOI Listing |
Anal Chem
September 2025
Department of Chemistry, Wuhan University, Wuhan 430072, China.
Three-dimensional printing (3DP) technology enables the flexible fabrication of integrated monolithic microextraction chips for high-throughput sample pretreatment. Meanwhile, the extraction performance of 3DP-based channels is largely limited by printer resolution and the commercially available printing materials. In this work, a 3DP array monolithic microextraction chip (AMC) was fabricated by integrating 26-array helical monolithic microextraction channels for sample pretreatment and 52-array gas valves for fluid control.
View Article and Find Full Text PDFFront Pharmacol
August 2025
General Surgery Department Three, Gansu Province Central Hospital, Lanzhou, China.
Fast and early detection of low-dose chemical toxicity is a critical unmet need in toxicology and human health, as conventional 2D culture models often fail to capture subtle cellular responses induced by sub-toxic exposures. Here, we present a bioengineered three-dimensional (3D) electrospun nanofibrous scaffold composed of polycaprolactone that enhances chromatin accessibility and primes fibroblasts for improved sensitivity to low-dose chemical stimuli in a short period. The scaffold mimics the extracellular matrix, providing topographical cues that reduce cytoskeletal tension and promote nuclear deformation, thereby increasing chromatin openness.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
Background: Integrated mode proton imaging is a clinically accessible method for proton radiographs (pRads), but its spatial resolution is limited by multiple Coulomb scattering (MCS). As the amplitude of MCS decreases with increasing particle charge, heavier ions such as carbon ions produce radiographs with better resolution (cRads). Improving image resolution of pRads may thus be achieved by transferring individual proton pencil beam images to the equivalent carbon ion data using a trained image translation network.
View Article and Find Full Text PDFActa Ortop Mex
September 2025
Servicio de Ortopedia y Traumatología, Hospital de San Rafael, Hospitales Pascual. Cádiz, España.
Introduction: anatomical deformities such as developmental dysplasia of the hip (DDH) and Perthes disease represent a challenge for reconstruction. The use of 3D-printed models can be helpful for assessing the deformity, bone mass, implant size, and orientation.
Objectives: to prospectively evaluate the outcomes of 3D simulation in primary total hip arthroplasty.
Bioinspir Biomim
September 2025
Mechanical Intelligence (MI) Research Group, London South Bank University, 103 Borough Road, London, London, SE1 0AA, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Conventional rigid grippers remain the most-used robotic grippers in industrial assembly tasks. However, they are limited in their ability to handle a diverse range of objects. This study draws inspiration from nature to address these limitations, employing multidisciplinary methods, such as computer-aided design, parametric modeling, finite element analysis, 3D printing, and mechanical testing.
View Article and Find Full Text PDF