Design and characterization of defined alpha-helix mini-proteins with intrinsic cell permeability.

Comput Biol Chem

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China. Electronic address:

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Proteins with intrinsic cell permeability that can access intracellular targets represent a promising strategy for novel drug development; however, a general design principle is still lacking. Here, we established a library of 46,678 de novo-designed mini-proteins and performed cell permeability screening via phage display. Analyses revealed a characteristic neighboring distribution of positive charges across helices among enriched mini-proteins of CPP7, CPP11, CPP55, CPP109 and CPP112. Compared with the state-of-the-art cell-penetrating mini-protein ZF5.3, the optimized mini-protein CPP11D36R exhibited a sevenfold increase in cell permeability. Endocytosis uptake and early endosome release are the key penetrating mechanisms. A machine learning model with high-throughput data achieved an F1 score of 0.41, significantly outperforming the previously reported CPP prediction models, including MLACP, CPPpred and CellPPD, by 41 %. Overall, our findings validate the effectiveness of a helical structure with a cationic distribution as a design principle on a large scale and present a robust approach for the development of cell-permeable mini-protein drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2024.108271DOI Listing

Publication Analysis

Top Keywords

cell permeability
16
intrinsic cell
8
design principle
8
design characterization
4
characterization defined
4
defined alpha-helix
4
alpha-helix mini-proteins with
4
mini-proteins with intrinsic
4
cell
4
permeability
4

Similar Publications

Antibacterial and antiviral properties of punicalagin (Review).

Med Int (Lond)

August 2025

Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.

Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.

View Article and Find Full Text PDF

Purpose: Acute graft-versus-host disease (aGVHD) is a significant cause of death in recipients of allogeneic hematopoietic stem cell transplantation. In this type of graft, the intestine is particularly affected, with the loss of intestinal barrier integrity playing a key role in its onset. In this scenario, the aim of the present research was to evaluate defibrotide, a heparin-like compound, marked for severe veno-occlusive disease, as an innovative therapeutic approach for restoring intestinal barrier integrity using an in vitro model and analyzing aGVHD patients' sera and clinical data.

View Article and Find Full Text PDF

Protein kinase C and endothelial dysfunction in select vascular diseases.

Front Cardiovasc Med

August 2025

Department of Surgery, Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.

Protein kinases have crucial roles in intracellular signal transduction pathways that affect a wide range of biochemical processes, including apoptosis, metabolism, proliferation, and protein synthesis. Vascular endothelial cells are important regulators of vasomotor tone, tissue/organ perfusion, and inflammation. Since its discovery in the late 1970s, a growing body of literature implicates protein kinase C (PKC) in pathways involving angiogenesis, endothelial permeability, microvascular tone, and endothelial activation.

View Article and Find Full Text PDF

Exploring the Role of β-1,3-Glucanase in Aerenchyma Development in Sugarcane Roots.

Ann Bot

September 2025

Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Brasil.

Background And Aims: Aerenchyma formation has emerged as a promising model for understanding cell wall modifications. Certain cells undergo programmed cell death (PCD), while others do not, suggesting the existence of a tightly regulated signaling dispersion mechanism. Cell-to-cell communication occurs via plasmodesmata, whose permeability is regulated by the deposition of callose (β-1,3-glucan) and its degradation by β-1,3-glucanase.

View Article and Find Full Text PDF

Structure, function and assembly of nuclear pore complexes.

Nat Rev Mol Cell Biol

September 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.

The defining property of eukaryotic cells is the storage of heritable genetic material in a nuclear compartment. For eukaryotic cells to carry out the myriad biochemical processes necessary for their function, macromolecules must be efficiently exchanged between the nucleus and cytoplasm. The nuclear pore complex (NPC) - which is a massive assembly of ~35 different proteins present in multiple copies totalling ~1,000 protein subunits and architecturally conserved across eukaryotes - establishes a size-selective channel for regulated bidirectional transport of folded macromolecules and macromolecular assemblies across the nuclear envelope.

View Article and Find Full Text PDF