98%
921
2 minutes
20
Prenatal diagnosis is crucial for pregnancies from couples with a carrier of a balanced translocation. We retrospectively reviewed 195 pregnancies from 189 couples with a balanced translocation carrier. Of these, 126 were from natural conception, while 69 were conceived through assisted reproductive technology (ART) with preimplantation genetic diagnosis (PGD). Both single nucleotide polymorphism (SNP) array analysis and conventional karyotyping were conducted on all pregnancies, and karyotype-visible imbalances and pathogenic/likely pathogenic copy number variations (CNVs) were categorized as clinically significant abnormalities. In natural conception group, couples with a female carrier experiencing more than two miscarriages accounted for 30.2 %, significantly higher than the 14.0 % in male carrier couples (p < 0.05). In the PGD group, similar difference was observed between female and male carrier couples (p < 0.05). In the natural pregnancies, SNP array analysis yielded additional 12 cases of CNVs, including two cases of pathogenic (P)/likely pathogenic (LP) aberrations, four variants with uncertain significance (VUS), and six likely benign variants. Only two CNVs were found to be associated with translocation breakpoints, which were finally confirmed to be of parental inheritance. In the PGD pregnancies, two cases of VUS unrelated to the translocation breakpoints were revealed. Taken together, repeated miscarriage was more frequently observed in couples where the carrier was female than male. Conventional SNP array analysis in prenatal diagnosis indicated insufficient evidence to support the notion that balanced translocations increase the likelihood of fetuses having clinically significant CNVs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533561 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e38387 | DOI Listing |
J Pharmacol Exp Ther
July 2025
Department of Pharmacy Practice, Parul Institute of Pharmacy & Research, Parul University, Limda, Waghodia, Vadodara, Gujarat, India. Electronic address:
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by widespread inflammation and immune system dysregulation. Recent research suggests that the gut microbiota may play a role in the development of SLE by modulating immune system responses, affecting cytokine production, and altering the activity of T and B cells lymphocytes. As a result, there is a growing interest in microbiota-targeted therapies, including probiotics, dietary changes, and fecal microbiota transplantation.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
October 2025
Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Romania.
Aims: The clusterin (CLU) gene is genetically associated with Alzheimer's disease (AD), and CLU levels have been shown to positively correlate with regional Aβ deposition in the brain, including in arteries from cerebral amyloid angiopathy (CAA) patients. CLU has also been shown to alter the aggregation, toxicity and blood-brain barrier transport of amyloid beta (Aβ) and has therefore been suggested to play a key role in regulating the balance between Aβ deposition and clearance in both the brain and cerebral blood vessels. However, it remains unclear whether the role of clusterin in relation to Aβ deposition is protective or pathogenic.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Rehabilitation Medicine, Second Xiangya Hospital, Central South University, Changsha 410011.
Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.
View Article and Find Full Text PDFDNA Repair (Amst)
August 2025
Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Laboratory of Genome Diversification & Integrity, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany. Electronic address:
The ability of B lymphocytes to diversify immunoglobulin (Ig) genes is central to the generation of high-affinity, class-switched antibodies and the establishment of effective humoral immunity. This diversification is achieved through three DNA remodeling processes that occur at defined stages of B cell development and maturation: V(D)J recombination, somatic hypermutation (SHM), and class switch recombination (CSR). These reactions all rely on the induction of programmed DNA lesions at Ig genes and their productive resolution by ubiquitous DNA repair pathways.
View Article and Find Full Text PDFStomatin is a ubiquitous and highly expressed protein in erythrocytes, which associates with cholesterol-rich microdomains in the plasma membrane and is known to regulate the activity of multiple ion channels and transporters, but the structural basis of association with stomatin targets remains unknown. Here we describe high-resolution structures of multiple stomatin complexes with endogenous binding partners isolated from human erythrocyte membranes, revealing that stomatin specifically associates with two membrane proteins involved in water transport and cell volume regulation, aquaporin-1 (AQP-1) and the urea transporter, UT-B (SLC14A1). Together, our results reveal the structural basis of stomatin oligomerization, membrane association, and target recruitment, and identify a putative role for stomatin in the regulation of osmotic balance in the erythrocyte.
View Article and Find Full Text PDF