98%
921
2 minutes
20
The ability to precisely pattern cells and proteins is crucial in various scientific disciplines, including cell biology, bioengineering, and materials chemistry. Current techniques, such as microcontact stamping, 3D bioprinting, and direct photopatterning, have limitations in terms of cost, versatility, and throughput. In this Article, we present an accessible approach that combines the throughput of photomask systems with the versatility of programmable light patterning using a low-cost consumer LCD resin printer. The method involves utilizing a bioinert hydrogel, poly(ethylene glycol) diacrylate (PEGDA), and a 405 nm sensitive photoinitiator (LAP) that are selectively cross-linked to form a hydrogel upon light exposure, creating specific regions that are protein and cell-repellent. Our result highlights that a low-cost LCD resin printer can project virtual photomasks onto the hydrogel, allowing for reasonable resolution and large-area printing at a fraction of the cost of traditional systems. The study demonstrates the calibration of exposure times for optimal resolution and accuracy and shape corrections to overcome the inherent challenges of wide-field resin printing. The potential of this approach is validated through widely studied 2D and 3D stem cell applications, showcasing its biocompatibility and ability to replicate complex tissue engineering patterns. We also validate the method with a cell-adhesive polymer (gelatin methacrylate; GelMA). The combination of low cost, high throughput, and accessibility makes this method broadly applicable across fields for enabling rapid and precise fabrication of cells and tissues in standard laboratory culture vessels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525498 | PMC |
http://dx.doi.org/10.1021/acsomega.4c06539 | DOI Listing |
Anal Chem
September 2025
Department of Chemistry, Wuhan University, Wuhan 430072, China.
Three-dimensional printing (3DP) technology enables the flexible fabrication of integrated monolithic microextraction chips for high-throughput sample pretreatment. Meanwhile, the extraction performance of 3DP-based channels is largely limited by printer resolution and the commercially available printing materials. In this work, a 3DP array monolithic microextraction chip (AMC) was fabricated by integrating 26-array helical monolithic microextraction channels for sample pretreatment and 52-array gas valves for fluid control.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
September 2025
Department of Industrial and Manufacturing Engineering, Pennsylvania State University, University Park, Pennsylvania, USA.
The screw-retained implant-supported crown is a durable, aesthetic restoration, but debonding between the crown and abutment remains a challenge to survivability. The purpose of this work was to devise an abutment shape that can be embedded into the crown while the crown is being additively manufactured. The result was a mechanically retained, no-adhesive abutment and crown unit that is mounted to the implant fixture.
View Article and Find Full Text PDFAdv Mater
September 2025
Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
Microrobots are expected to push the boundaries of robotics by enabling navigation in confined and cluttered environments due to their sub-centimeter scale. However, most microrobots perform best only in the specific conditions for which they are designed and require complete redesign and fabrication to adapt to new tasks and environments. Here, fully 3D-printed modular microrobots capable of performing a broad range of tasks across diverse environments are introduced.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
Strain sensors have received considerable attention in personal healthcare due to their ability to monitor real-time human movement. However, the lack of chemical sensing capabilities in existing strain sensors limits their utility for continuous biometric monitoring. Although the development of dual wearable sensors capable of simultaneously monitoring human motion and biometric data presents significant challenges, the ability to fabricate these sensors with geometries tailored to individual users is highly desirable.
View Article and Find Full Text PDFBMC Oral Health
September 2025
Gulhane Faculty of Dentistry, Department of Restorative Dental Treatment, University of Health Sciences, Ankara, Turkey.
Aim: The aim of this study was to investigate the effect of post-polymerization time and curing device type on the surface roughness, microhardness and color change of 3D printed permanent resin materials.
Materials And Methods: In this study, permanent resin samples with a layer print thickness of 50 μm and dimensions of 10 × 2 mm3 were produced on SLA and DLP printers. The samples were post-polymerized in blue LED and UV LED curing devices for 10, 20, 40 and 60 min.