98%
921
2 minutes
20
This study introduces a cutting-edge, high-resolution tool leveraging the predictive prowess of convolutional neural networks to advance the field of hazard assessment in urban pluvial flooding scenarios. The tool uniquely accounts for the high heterogeneity of urban space and the potential impact of complex climate scenarios, which are often underestimated by traditional data-reliant methods. Employing Shenzhen as a case study, the model showcased superior accuracy, resilience, and interpretability, illuminating potential flood hazards. The performance analysis shows that the model can accurately predict the vast majority of urban flood depths, but has errors in extreme flood predictions (depths greater than 35 cm). Findings underscore escalating flood impacts under enhanced scenario loads, with western and central Shenzhen-regions rife with construction-highlighted as particularly vulnerable. Under the most severe matrix scenario (Scenario 25), economic losses are estimated to be about $25,484 million. These commercial and residential hotspots are anticipated to suffer maximum economic loss, with these two areas accounting for 39.6% and 25.1% of the total losses, necessitating reinforced mitigation efforts, especially during extreme rainfall events and high soil saturation levels. In addition, the flooding control strategies should prioritize the reduction of flood inundation areas and integrate functionally oriented land use characteristics in their development. By aiding in the precise identification of flood-prone areas, this research expedites the development of efficient evacuation plans, bolsters urban sustainability, and augments climate resilience, ultimately mitigating flood-induced economic tolls.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.119470 | DOI Listing |
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFBMC Musculoskelet Disord
September 2025
Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.
Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.
Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.
Med Eng Phys
October 2025
Biomedical Device Technology, Istanbul Aydın University, Istanbul, 34093, Istanbul, Turkey. Electronic address:
Deep learning approaches have improved disease diagnosis efficiency. However, AI-based decision systems lack sufficient transparency and interpretability. This study aims to enhance the explainability and training performance of deep learning models using explainable artificial intelligence (XAI) techniques for brain tumor detection.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
September 2025
From the Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America (J.S.S., B.M., S.H., A.H., J.S.), and Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (H.S.).
Background And Purpose: The choroid of the eye is a rare site for metastatic tumor spread, and as small lesions on the periphery of brain MRI studies, these choroidal metastases are often missed. To improve their detection, we aimed to use artificial intelligence to distinguish between brain MRI scans containing normal orbits and choroidal metastases.
Materials And Methods: We present a novel hierarchical deep learning framework for sequential cropping and classification on brain MRI images to detect choroidal metastases.
J R Soc Interface
September 2025
Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, Île-de-France, France.
A number of techniques have been developed to measure the three-dimensional trajectories of protists, which require special experimental set-ups, such as a pair of orthogonal cameras. On the other hand, machine learning techniques have been used to estimate the vertical position of spherical particles from the defocus pattern, but they require the acquisition of a labelled dataset with finely spaced vertical positions. Here, we describe a simple way to make a dataset of images labelled with vertical position from a single 5 min movie, based on a tilted slide set-up.
View Article and Find Full Text PDF