98%
921
2 minutes
20
Rice production is highly susceptible to various pathogens, including Rhizoctonia solani, Curvularia lunata, and Epicoccum rostratum, which are major threats in Asia. Exploring biological control methods using endophytic bacteria offers promising opportunities to enhance rice resilience against these lethal diseases. Using 16S RNA sequencing, we identified four endophytic isolates of Bacillus spp. from rice roots, stems, and leaves. We evaluated the antagonistic activity of these endophytic bacterial isolates against rice pathogens both in vitro and in vivo. These isolates inhibited the growth of C. lunata by 82 %, R. solani by 79 %, and E. rostratum by 88 % in vitro. The detached leaf assay for sheath blight (ShB) disease severity in strains ranged from 10.4 % to 73.3 %. In vivo results showed that B. amyloliquefaciens (R-19) exhibited the lowest disease intensity at 7.2 % and the highest disease suppression at 78.8 %. The fungicide propiconazole at 0.1 % treatment showed the lowest disease intensity of 7.7 % and the highest disease suppression of 73.4 %, compared to the infected control. Besides biocontrol efficacy, endophytic isolates enhance plant growth parameters, including shoot height, root length, fresh and dry weights, number of tillers, and grains per tiller. Plant hormones abscisic acid (ABA) and gibberellic acids (GA) increased by 35 % and 53 %, respectively, due to B. subtilis (R-20) and B. amyloliquefaciens (R-19), while flavonoid and indole acetic acid (IAA) concentrations surged by 30%-80 %. Similarly, chlorophyll (a, b), carotenoids, antioxidant enzymatic activity, phenolic content, carbohydrates, and proline contents were higher compared to the control. This study provides a foundation for future studies on novel and eco-friendly biocontrol agents. In addition, our study recommends the integration of endophytic bacteria into sustainable agriculture for enhancing rice production and reducing disease impacts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2024.107084 | DOI Listing |
Microb Cell Fact
September 2025
Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31257, Egypt.
Background And Aim: Synthetic dyes in the textile industry pose risks to human health and environmental safety. The current study aims to examine the efficacy of a novel esterase derived from an endophyte fungus in decolorizing diverse dyes, focusing on its production, purification, optimization, and characterization.
Results: Trichoderma afroharzianum AUMC16433, a novel fungal endophyte with esterase-producing ability, was first detected from the cladodes of Opuntia ficus indica by ITS-rRNA sequencing.
Ecotoxicol Environ Saf
September 2025
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China. Ele
Seven plant growth-promoting bacteria (PGPB) were isolated from extracts of surface-sterilized Sedum alfredii Hance. Among the seven isolates, the strain SaRB5 identified as Stenotrophomonas maltophilia through 16S rDNA sequence analysis, exhibited highest levels of heavy metal resistance and plant growth-promoting traits. SaRB5 tolerated high concentrations of cadmium (Cd) (1.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2025
School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.
Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.
View Article and Find Full Text PDFJ Basic Microbiol
September 2025
Department of Plant Pathology, CCS Haryana Agricultural University, Hisar, Haryana, India.
Cereal cyst nematode (Heterodera avenae) significantly hampers barley production by causing stunted growth and yield losses. This study explored the biocontrol potential of multitrait root endophytic bacteria isolated from H. avenae-infested barley roots to suppress nematode infestation.
View Article and Find Full Text PDFArch Microbiol
September 2025
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
Endophytic fungi are nonpathogenic fungi that live symbiotically in the interior of healthy plant tissues and form mutualistic associations with their hosts. These fungi are critically involved in promoting plant development, strengthening plant uptake of nutrients, and improving plant resistance to biotic and abiotic stress conditions. Endophytic fungi improve plant growth by synthesizing phytohormones (e.
View Article and Find Full Text PDF