98%
921
2 minutes
20
Oligomeric acceptors (OAs) have attracted considerable attention in the organic photovoltaics (OPV) field owing to their capacity in balancing the merits from both monomeric and polymeric acceptors. A delicate control over the distortion between blocks of OAs usually determines the performance and stability of relevant OPV devices. However, it imposes great complexity to realize a controllable degree of distortion by tuning the skeleton of blocks and the position of linker between blocks. Herein, we developed a facile strategy to rationally control the geometry distortion of OAs via a straightforward substitution of alkoxy side-chains on their blocks. This helps elucidate the integrated influences of molecular distortion and non-bonded contacts on the selective interactions between OA molecules and between OA and host acceptor in ternary blend. We demonstrate the alkoxy-OA molecules having stronger self-interactions would mitigate their interactions with host acceptor, therefore alleviating the kinetic diffusion and excessive aggregation of total acceptors. Combining with a composite-interlayer strategy by introducing a phenyl-substituted self-assembled monolayer to enhance the doping with polyoxometalate, an impressive efficiency of 20.1 % is achieved accompanied by a negligible burn-in loss against physical aging. This study demonstrates the validation of tuning of selective interactions towards high-performance and burn-in-free OPV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202418439 | DOI Listing |
Biochim Biophys Acta Biomembr
September 2025
Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil. Electronic address:
Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2025
Materials Engineering, McGill university, Montreal H3A0C5, Canada.
Transcutaneous devices such as dental implants frequently fail due to infections at their interfaces with epithelial tissues. These infections are facilitated by the lack of integration between the devices and the surrounding soft tissues. This study aims to improve epithelial integration through surface modification of a transcutaneous implant material (polyetheretherketone (PEEK)).
View Article and Find Full Text PDFJ Med Internet Res
September 2025
Department of Community Medicine, Faculty of Health, UiT The Arctic University of Norway, Tromsø, Norway.
Background: The ability to access and evaluate online health information is essential for young adults to manage their physical and mental well-being. With the growing integration of the internet, mobile technology, and social media, young adults (aged 18-30 years) are increasingly turning to digital platforms for health-related content. Despite this trend, there remains a lack of systematic insights into their specific behaviors, preferences, and needs when seeking health information online.
View Article and Find Full Text PDFPlant Cell
September 2025
Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.
View Article and Find Full Text PDFPLoS One
September 2025
College of Landscape Architecture and Art, Northwest Agriculture and Forestry University, Xianyang, China.
This study investigates the spatial and temporal distribution and the influencing factors of 579 cultural heritage sites along the Qin-Shu Ancient Road in Shaanxi Province, employing kernel density estimation, buffer analysis, and geographic detectors. Three key findings emerge: (1) The spatial pattern is characterized by a "line-belt-core" structure, with a belt-like aggregation along the Xi'an-Baoji-Hanzhong axis. Core concentrations are found in Xi'an (181 sites), Hanzhong (159 sites), and Ankang (122 sites), with secondary concentrations in Baoji (72 sites) and Shangluo (36 sites).
View Article and Find Full Text PDF