Key Sputtering Parameters for Precursor InO Films to Achieve High Carrier Mobility.

ACS Appl Mater Interfaces

Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Owing to their extremely high carrier mobility (μ) of >100 cm/(V s) and suitable low carrier concentrations, transparent conducting films of solid-phase crystallized H-doped InO (spc-IO:H) exhibit high conductivity with high optical transparency over a broad frequency range. These properties can be attributed to solid-phase crystallization of the amorphous precursor film. Therefore, the development of high-quality spc-IO:H films requires the deposition conditions of the precursor films to be optimized. This study systematically investigates the effects of three key sputtering parameters, namely, water vapor partial pressure (), radio frequency magnetron sputtering power (), and flow ratio of O to total sputter gas (O) on the crystallographic texture evolution of spc-IO:H films during solid-phase crystallization. In addition, the carrier transport in the resulting films is examined. , , and O are found to be indispensable for producing high-mobility (>100 cm/(V s)) spc-IO:H films. Furthermore, it is found that introducing a small amount of during deposition, a lower , and a suitable O facilitates the formation of precursor films having a lower crystallite density. Moreover, after annealing at a temperature of 200 °C, the IO:H precursor films with a lower crystallite density are found to have larger crystal grains. However, the μ values of the postannealed IO:H films are mainly correlated with the stoichiometric deviation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c09669DOI Listing

Publication Analysis

Top Keywords

spc-ioh films
12
precursor films
12
films
10
key sputtering
8
sputtering parameters
8
high carrier
8
carrier mobility
8
>100 cm/v
8
films solid-phase
8
solid-phase crystallization
8

Similar Publications

Composite films biobased on Prosopis nigra polysaccharide for potential sustainable food packaging.

Int J Biol Macromol

September 2025

Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Laboratorio de Biomateriales y Bioprocesos, Av. Belgrano y Pasaje Caseros, SM de Tucumán, 4000, Tucumán. R, Argentina; Universidad Nacional de Tucumán, Facultad de Bioquímica, Química y Farmacia. Laboratorio de Bioproceso

This study explores the use of plant-derived polysaccharides to develop bio-based films for food-packaging applications. A film-forming solution composed of Prosopis nigra biopolymer (PN-B), carboxymethyl cellulose (CMC), and glycerol was optimized by central composite design (CCD), resulting in two formulations: P1 and P11. The films were subsequently functionalized with silver nanoparticles (AgNPs) synthesized via chemical and biological routes.

View Article and Find Full Text PDF

Development of chitosan coating loaded with solvothermal-prepared cerium oxide for banana preservation.

Int J Biol Macromol

September 2025

Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam. Electronic address:

In this work, cerium oxide nanoparticles prepared through the solvothermal route (sCeO NPs) are integrated into chitosan (CH) matrices to serve as an efficient coating for banana preservation. The morphological, structural, mechanical, and water-barrier properties of nanocomposite films integrated with various sCeO concentrations were investigated to determine the optimal sCeO NPs concentration within the film matrix. Furthermore, the sensory evaluation and physicochemical properties of the coated and uncoated bananas, including visual attributes, peel browning, CO production, firmness, weight loss, ripening rate (based on total soluble solids and titratable acidity), and pH, are considered during storage.

View Article and Find Full Text PDF

Fresh walnuts are prone to moisture loss and spoilage after harvest, leading to reduced appearance and sensory quality. In this study, a multifunctional chitosan (CS)-based film was fabricated by incorporating a bacterial cellulose/oregano essential oil (BC/OEO) Pickering emulsion, with hydrogen bonding promoting cohesive matrix integration. The film's physicochemical properties, along with its antimicrobial and antioxidant activities, were systematically evaluated.

View Article and Find Full Text PDF

Thermally stable and highly wetted asymmetric porous nanocellulose/poly(m-phenylene isophthalamide) composite separators for high-performance lithium-ion batteries.

Int J Biol Macromol

September 2025

Jiangsu Provincial Key Lab for The Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.

Aramid films are potential separator candidates for high-safety lithium-ion batteries (LIBs) due to their inherent flame retardancy and outstanding thermal stability. However, both weak liquid electrolyte wettability and poor mechanical properties of aramid separators for lithium-ion batteries result in low ionic conductivity and unsatisfactory electrochemical performance for LIBs. Herein, a novel asymmetric porous composite separator composed of a relatively dense nanocellulose (CNC) layer and a porous poly(m-phenylene isophthalamide) (PMIA) supporting layer has been fabricated by using a water-induced phase conversion process.

View Article and Find Full Text PDF

Sustainable bio-based film based on chitosan resin crosslinking with tannin, phytic acid and octadecylamine for food packaging application.

Int J Biol Macromol

September 2025

Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, People's Republic of China. Electronic address:

Chitosan and tannin are both promising renewable materials for food packaging; however, their effectiveness is limited by incomplete interactions between them. Therefore, phytic acid and octadecylamine were employed to create chitosan-tannin-phytic acid-octadecylamine (CTPO) films that are flame-retardant, UV-resistant, antibacterial and hydrophobic for food packaging applications. The findings indicate that the CTPO film exhibited excellent hydrophobicity and mechanical properties, with a water contact angle of 133.

View Article and Find Full Text PDF